24 virtual bool IsNull()
const {
return false; }
32 bool IsNull()
const override {
return true; }
226 void ReorderOrigins(
unsigned int* newOrdering,
unsigned int numNewOrdering);
235 unsigned int m_ConcatAxis;
237 uint32_t m_NumDimensions;
238 uint32_t** m_ViewOrigins;
291 uint32_t** m_ViewSizes;
292 bool m_IsAxisSet =
false;
299template <
typename TensorShapeIt>
302 unsigned int concatenationDimension)
304 auto numInputs = std::distance(first, last);
311 const auto& firstInputShape = *first;
313 const unsigned int numDimensions = firstInputShape.GetNumDimensions();
314 for (
auto it = first + 1; it != last; ++it)
316 if (it->GetNumDimensions() != numDimensions)
322 if (concatenationDimension >= numDimensions)
327 for (
auto it = first; it != last; ++it)
329 for (
unsigned int d = 0; d < numDimensions; ++d)
331 const bool dimSizeOk = (d == concatenationDimension) || (firstInputShape[d] == (*it)[d]);
335 " except the concatenation dimension");
340 OriginsDescriptor viewsDescriptor(
static_cast<uint32_t
>(numInputs), numDimensions);
343 uint32_t viewIndex = 0u;
344 uint32_t coordAlongConcatDim = 0u;
345 for (
auto it = first; it != last; ++it)
347 const auto& inputShape = *it;
349 for (
unsigned int i = 0; i < concatenationDimension; ++i)
354 viewsDescriptor.
SetViewOriginCoord(viewIndex, concatenationDimension, coordAlongConcatDim);
355 unsigned int dimSize = inputShape[concatenationDimension];
356 coordAlongConcatDim += dimSize;
359 for (
unsigned int i = concatenationDimension + 1; i < numDimensions; ++i)
367 return viewsDescriptor;
884 std::vector<std::pair<unsigned int, unsigned int>> crops)
900 std::vector<std::pair<unsigned int, unsigned int>>
m_Crops;
947 unsigned int numOutputSlots = 2u,
1052 const std::vector<std::pair<unsigned int, unsigned int>>& padList)
1069 std::vector<std::pair<unsigned int, unsigned int>>
m_PadList;
1201 PadDescriptor(
const std::vector<std::pair<unsigned int, unsigned int>>& padList,
1202 const float& padValue = 0,
1218 std::vector<std::pair<unsigned int, unsigned int>>
m_PadList;
1230 SliceDescriptor(
const std::vector<unsigned int>& begin,
const std::vector<unsigned int>& size)
1306 const std::vector<int>& end,
1307 const std::vector<int>& stride)
1339 int startForAxis)
const;
1587 bool transposeY =
false,
1588 bool adjointX =
false,
1589 bool adjointY =
false,
1625 static std::pair<unsigned int, unsigned int>
GetAxesToMul(
Copyright (c) 2021 ARM Limited and Contributors.
PaddingMode
The padding mode controls whether the padding should be filled with constant values (Constant),...
PaddingMethod
The padding method modifies the output of pooling layers.
@ Exclude
The padding fields don't count and are ignored.
OriginsDescriptor CreateDescriptorForConcatenation(TensorShapeIt first, TensorShapeIt last, unsigned int concatenationDimension)
Convenience template to create an OriginsDescriptor to use when creating a ConcatLayer for performing...
SpaceToDepthDescriptor DepthToSpaceDescriptor
A DepthToSpaceDescriptor for the DepthToSpaceLayer.
NormalizationAlgorithmChannel
SoftmaxDescriptor LogSoftmaxDescriptor
A LogSoftmaxDescriptor for the LogSoftmaxLayer.
LstmDescriptor UnidirectionalSequenceLstmDescriptor
NormalizationAlgorithmMethod
@ LocalBrightness
Krichevsky 2012: Local Brightness Normalization.
float m_A
Alpha upper bound value used by the activation functions. (BoundedReLu, Linear, TanH,...
float m_B
Beta lower bound value used by the activation functions. (BoundedReLu, Linear, TanH).
bool operator==(const ActivationDescriptor &rhs) const
ActivationDescriptor(armnn::ActivationFunction activation, float a=0, float b=0)
ActivationFunction m_Function
The activation function to use (Sigmoid, TanH, Linear, ReLu, BoundedReLu, SoftReLu,...
int m_Axis
Axis to reduce across the input tensor.
bool operator==(const ArgMinMaxDescriptor &rhs) const
ArgMinMaxFunction m_Function
Specify if the function is to find Min or Max.
armnn::DataType m_Output_Type
Deprecated and will be removed in future release.
Base class for all descriptors.
virtual ~BaseDescriptor()=default
virtual bool IsNull() const
bool m_AdjointX
Adjoint the slices of each input tensor Transpose and Adjoint can not both be set to true for the sam...
static std::pair< unsigned int, unsigned int > GetAxesToMul(DataLayout dataLayout, const TensorShape &tensorShape)
Static helper to get the two axes (for each input) for multiplication.
bool operator==(const BatchMatMulDescriptor &rhs) const
static PermutationVector GetPermuteVec(DataLayout dataLayout, const TensorShape &tensorShape)
Static helper to get the axes which will be transposed.
static std::vector< unsigned int > GetAxesNotMul(DataLayout dataLayout, const TensorShape &tensorShape)
Static helper to get the axes (for each input) that will not be multiplied together.
bool m_TransposeX
Transpose the slices of each input tensor Transpose and Adjoint can not both be set to true for the s...
DataLayout m_DataLayoutX
Data layout of each input tensor, such as NHWC/NDHWC (leave as default for arbitrary layout)
BatchMatMulDescriptor(bool transposeX=false, bool transposeY=false, bool adjointX=false, bool adjointY=false, DataLayout dataLayoutX=DataLayout::NCHW, DataLayout dataLayoutY=DataLayout::NCHW)
float m_Eps
Value to add to the variance. Used to avoid dividing by zero.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
bool operator==(const BatchNormalizationDescriptor &rhs) const
BatchNormalizationDescriptor()
std::vector< unsigned int > m_BlockShape
Block shape values.
bool operator==(const BatchToSpaceNdDescriptor &rhs) const
BatchToSpaceNdDescriptor(std::vector< unsigned int > blockShape, std::vector< std::pair< unsigned int, unsigned int > > crops)
BatchToSpaceNdDescriptor()
std::vector< std::pair< unsigned int, unsigned int > > m_Crops
The values to crop from the input dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
TensorShape m_BroadcastToShape
Target shape value.
bool operator==(const BroadcastToDescriptor &rhs) const
BroadcastToDescriptor(const TensorShape &shape)
uint32_t m_NumGroups
Number of groups for the channel shuffle operation.
ChannelShuffleDescriptor(const uint32_t &numGroups, const uint32_t &axis)
bool operator==(const ChannelShuffleDescriptor &rhs) const
ChannelShuffleDescriptor()
uint32_t m_Axis
Axis to apply channel shuffle operation on.
ComparisonOperation m_Operation
Specifies the comparison operation to execute.
bool operator==(const ComparisonDescriptor &rhs) const
ComparisonDescriptor(ComparisonOperation operation)
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation along y axis.
bool operator==(const Convolution2dDescriptor &rhs) const
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t GetNumInputs() const
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Convolution2dDescriptor()
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_PadBack
Padding back value in the depth dimension.
uint32_t m_DilationZ
Dilation along z axis.
uint32_t m_DilationY
Dilation along y axis.
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NDHWC, NCDHW).
uint32_t GetNumInputs() const
Get the number of views/inputs.
uint32_t m_PadFront
Padding front value in the depth dimension.
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool operator==(const Convolution3dDescriptor &rhs) const
Convolution3dDescriptor()
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation factor value for height dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
bool operator==(const DepthwiseConvolution2dDescriptor &rhs) const
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t GetNumInputs() const
Get the number of views/inputs.
DepthwiseConvolution2dDescriptor()
uint32_t m_DilationX
Dilation factor value for width dimension.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
bool operator==(const DetectionPostProcessDescriptor &rhs) const
uint32_t m_NumClasses
Number of classes.
float m_NmsScoreThreshold
NMS score threshold.
float m_NmsIouThreshold
Intersection over union threshold.
float m_ScaleY
Center size encoding scale y.
uint32_t m_DetectionsPerClass
Detections per classes, used in Regular NMS.
bool m_UseRegularNms
Use Regular NMS.
uint32_t m_MaxClassesPerDetection
Maximum numbers of classes per detection, used in Fast NMS.
float m_ScaleH
Center size encoding scale height.
float m_ScaleW
Center size encoding scale weight.
DetectionPostProcessDescriptor()
float m_ScaleX
Center size encoding scale x.
uint32_t m_MaxDetections
Maximum numbers of detections.
bool operator==(const ElementwiseBinaryDescriptor &rhs) const
BinaryOperation m_Operation
Specifies the elementwiseBinary operation to execute.
ElementwiseBinaryDescriptor()
ElementwiseBinaryDescriptor(BinaryOperation operation)
ElementwiseUnaryDescriptor()
bool operator==(const ElementwiseUnaryDescriptor &rhs) const
ElementwiseUnaryDescriptor(UnaryOperation operation)
UnaryOperation m_Operation
Specifies the elementwiseUnary operation to execute.
FakeQuantizationDescriptor()
float m_Min
Minimum value.
bool operator==(const FakeQuantizationDescriptor &rhs) const
float m_Max
Maximum value.
bool operator==(const FillDescriptor &rhs) const
FillDescriptor(const float &value)
bool m_TransposeWeightMatrix
Enable/disable transpose weight matrix.
bool m_ConstantWeights
Enable/disable constant weights and biases.
uint32_t GetNumInputs() const
Get the number of inputs.
bool operator==(const FullyConnectedDescriptor &rhs) const
FullyConnectedDescriptor()
bool m_BiasEnabled
Enable/disable bias.
unsigned int m_NumOutputSlots
FusedKernelType m_FusedKernelType
bool operator==(const FusedDescriptor &rhs) const
FusedDescriptor(unsigned int numInputSlots=4u, unsigned int numOutputSlots=2u, FusedKernelType fusedType=FusedKernelType::AddMulAdd)
unsigned int m_NumInputSlots
int32_t m_Axis
The axis in params to gather indices from.
bool operator==(const GatherDescriptor &rhs) const
GatherDescriptor(int32_t axis)
float m_Eps
Epsilon, small scalar value added to variance to avoid dividing by zero. Defaults to 1e-12f.
InstanceNormalizationDescriptor()
bool operator==(const InstanceNormalizationDescriptor &rhs) const
float m_Gamma
Gamma, the scale scalar value applied for the normalized tensor. Defaults to 1.0.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
float m_Beta
Beta, the offset scalar value applied for the normalized tensor. Defaults to 1.0.
float m_Eps
Used to avoid dividing by zero.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
L2NormalizationDescriptor()
bool operator==(const L2NormalizationDescriptor &rhs) const
LogicalBinaryDescriptor(LogicalBinaryOperation operation)
LogicalBinaryOperation m_Operation
Specifies the logical operation to execute.
bool operator==(const LogicalBinaryDescriptor &rhs) const
LogicalBinaryDescriptor()
An LstmDescriptor for the LstmLayer.
float m_CellIntermediateScale
Cell intermediate quantization scale.
float m_InputIntermediateScale
Input intermediate quantization scale.
bool m_PeepholeEnabled
Enable/disable peephole.
bool m_TimeMajor
Enable/disable time major.
bool operator==(const LstmDescriptor &rhs) const
int32_t m_HiddenStateZeroPoint
Hidden State zero point.
bool m_LayerNormEnabled
Enable/disable layer normalization.
float m_ClippingThresCell
Clipping threshold value for the cell state.
bool m_ProjectionEnabled
Enable/disable the projection layer.
float m_ClippingThresProj
Clipping threshold value for the projection.
float m_OutputIntermediateScale
Output intermediate quantization scale.
bool m_CifgEnabled
Enable/disable cifg (coupled input & forget gate).
uint32_t m_ActivationFunc
The activation function to use.
float m_HiddenStateScale
Hidden State quantization scale.
float m_ForgetIntermediateScale
Forget intermediate quantization scale.
std::vector< unsigned int > m_Axis
Values for the dimensions to reduce.
bool m_KeepDims
Enable/disable keep dimensions. If true, then the reduced dimensions that are of length 1 are kept.
bool operator==(const MeanDescriptor &rhs) const
MeanDescriptor(const std::vector< unsigned int > &axis, bool keepDims)
NormalizationAlgorithmMethod m_NormMethodType
Normalization method algorithm to use (LocalBrightness, LocalContrast).
float m_Alpha
Alpha value for the normalization equation.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
float m_Beta
Beta value for the normalization equation.
float m_K
Kappa value used for the across channel normalization equation.
NormalizationDescriptor()
uint32_t m_NormSize
Depth radius value.
bool operator==(const NormalizationDescriptor &rhs) const
NormalizationAlgorithmChannel m_NormChannelType
Normalization channel algorithm to use (Across, Within).
Null Descriptor used as a return value from the IConnectableLayer GetParameters method by layers whic...
bool IsNull() const override
An OriginsDescriptor for the ConcatLayer.
friend void swap(OriginsDescriptor &first, OriginsDescriptor &second)
Swap the ViewsDescriptor values first and second.
bool operator==(const OriginsDescriptor &rhs) const
Status SetViewOriginCoord(uint32_t view, uint32_t coord, uint32_t value)
@Brief Set the view origin coordinates.
uint32_t GetNumViews() const
Get the number of views.
unsigned int GetConcatAxis() const
Get the concatenation axis value.
void SetConcatAxis(unsigned int concatAxis)
Set the concatenation axis value.
uint32_t GetNumDimensions() const
Get the number of dimensions.
void ReorderOrigins(unsigned int *newOrdering, unsigned int numNewOrdering)
Reorders the viewOrigins in accordance with the indices presented in newOrdering array.
const uint32_t * GetViewOrigin(uint32_t idx) const
Return the view origin at the int value idx.
OriginsDescriptor & operator=(OriginsDescriptor rhs)
float m_PadValue
Optional value to use for padding, defaults to 0.
PaddingMode m_PaddingMode
Specifies the Padding mode (Constant, Reflect or Symmetric)
std::vector< std::pair< unsigned int, unsigned int > > m_PadList
Specifies the padding for input dimension.
bool operator==(const PadDescriptor &rhs) const
PadDescriptor(const std::vector< std::pair< unsigned int, unsigned int > > &padList, const float &padValue=0, const PaddingMode &paddingMode=PaddingMode::Constant)
PermutationVector m_DimMappings
Indicates how to translate tensor elements from a given source into the target destination,...
bool operator==(const PermuteDescriptor &rhs) const
PermuteDescriptor(const PermutationVector &dimMappings)
uint32_t m_PadRight
Padding right value in the width dimension.
PoolingAlgorithm m_PoolType
The pooling algorithm to use (Max. Average, L2).
uint32_t m_PoolHeight
Pooling height value.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_PoolWidth
Pooling width value.
bool operator==(const Pooling2dDescriptor &rhs) const
PaddingMethod m_PaddingMethod
The padding method to be used. (Exclude, IgnoreValue).
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
uint32_t m_PadRight
Padding right value in the width dimension.
PoolingAlgorithm m_PoolType
The pooling algorithm to use (Max. Average, L2).
uint32_t m_PadBack
Padding back value in the depth dimension.
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
uint32_t m_PoolHeight
Pooling height value.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCDHW, NDHWC).
uint32_t m_PoolWidth
Pooling width value.
uint32_t m_PadFront
Padding front value in the depth dimension.
PaddingMethod m_PaddingMethod
The padding method to be used. (Exclude, IgnoreValue).
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_PoolDepth
Pooling depth value.
bool operator==(const Pooling3dDescriptor &rhs) const
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
unsigned int m_NumOutputSlots
PreCompiledDescriptor(unsigned int numInputSlots=1u, unsigned int numOutputSlots=1u)
~PreCompiledDescriptor()=default
unsigned int m_NumInputSlots
float m_CellIntermediateScale
Cell intermediate quantization scale.
float m_InputIntermediateScale
Input intermediate quantization scale.
bool m_PeepholeEnabled
Enable/disable peephole.
int32_t m_HiddenStateZeroPoint
Hidden State zero point.
bool m_LayerNormEnabled
Enable/disable layer normalization.
bool m_ProjectionEnabled
Enable/disable the projection layer.
float m_OutputIntermediateScale
Output intermediate quantization scale.
float m_ProjectionClip
Clipping threshold value for the projection.
float m_CellClip
Clipping threshold value for the cell state.
bool m_CifgEnabled
Enable/disable CIFG (coupled input & forget gate).
bool operator==(const QLstmDescriptor &rhs) const
float m_HiddenStateScale
Hidden State quantization scale.
float m_ForgetIntermediateScale
Forget intermediate quantization scale.
bool m_KeepDims
if true then output shape has no change.
bool operator==(const ReduceDescriptor &rhs) const
std::vector< uint32_t > m_vAxis
The indices of the dimensions to reduce.
ReduceOperation m_ReduceOperation
Specifies the reduction operation to execute.
TensorShape m_TargetShape
Target shape value.
ReshapeDescriptor(const TensorShape &shape)
bool operator==(const ReshapeDescriptor &rhs) const
bool m_HalfPixelCenters
Half Pixel Centers.
uint32_t m_TargetHeight
Target height value.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
ResizeMethod m_Method
The Interpolation method to use (Bilinear, NearestNeighbor).
uint32_t m_TargetWidth
Target width value.
bool m_AlignCorners
Aligned corners.
bool operator==(const ResizeDescriptor &rhs) const
bool m_InputEnabled
Flag to show if input tensor is accepted.
ScatterNdFunction m_Function
Specify if the function is update, add, sub, max or min.
int32_t m_Axis
Extra attribute for ScatterElement, will be set to 0 by default, we do not support axis !...
bool m_AxisEnabled
Flag for ScatterElement, will be set to false by default, we do not support m_AxisEnable = true for n...
bool operator==(const ScatterNdDescriptor &rhs) const
ScatterNdDescriptor(ScatterNdFunction function, bool inputEnabled)
ScatterNdDescriptor(ScatterNdFunction function, bool inputEnabled, int32_t axis)
std::vector< unsigned int > m_Begin
Beginning indices of the slice in each dimension.
bool operator==(const SliceDescriptor &rhs) const
std::vector< unsigned int > m_Size
Size of the slice in each dimension.
SliceDescriptor(const std::vector< unsigned int > &begin, const std::vector< unsigned int > &size)
A SoftmaxDescriptor for the SoftmaxLayer.
int m_Axis
Scalar, defaulted to the last index (-1), specifying the dimension the activation will be performed o...
bool operator==(const SoftmaxDescriptor &rhs) const
float m_Beta
Exponentiation value.
std::vector< unsigned int > m_BlockShape
Block shape value.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
std::vector< std::pair< unsigned int, unsigned int > > m_PadList
Specifies the padding values for the input dimension: heightPad{top, bottom} widthPad{left,...
SpaceToBatchNdDescriptor()
bool operator==(const SpaceToBatchNdDescriptor &rhs) const
SpaceToBatchNdDescriptor(const std::vector< unsigned int > &blockShape, const std::vector< std::pair< unsigned int, unsigned int > > &padList)
A SpaceToDepthDescriptor for the SpaceToDepthLayer.
bool operator==(const SpaceToDepthDescriptor &rhs) const
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
unsigned int m_BlockSize
Scalar specifying the input block size. It must be >= 1.
SpaceToDepthDescriptor(unsigned int blockSize, DataLayout dataLayout)
TensorShape m_InputShape
Required shape of all input tensors.
bool operator==(const StackDescriptor &rhs) const
uint32_t m_Axis
0-based axis along which to stack the input tensors.
StackDescriptor(uint32_t axis, uint32_t numInputs, const TensorShape &inputShape)
uint32_t m_NumInputs
Number of input tensors.
StandInDescriptor(uint32_t numInputs, uint32_t numOutputs)
uint32_t m_NumOutputs
Number of output tensors.
bool operator==(const StandInDescriptor &rhs) const
uint32_t m_NumInputs
Number of input tensors.
std::vector< int > m_Stride
Stride values for the input that will be sliced.
std::vector< int > m_Begin
Begin values for the input that will be sliced.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
int32_t m_BeginMask
Begin mask value.
bool operator==(const StridedSliceDescriptor &rhs) const
int32_t m_ShrinkAxisMask
Shrink axis mask value. If set, the nth specification shrinks the dimensionality by 1.
int32_t m_NewAxisMask
New axis mask value.
std::vector< int > m_End
End values for the input that will be sliced.
int32_t m_EndMask
End mask value.
int GetStartForAxis(const TensorShape &inputShape, unsigned int axis) const
int32_t m_EllipsisMask
Ellipsis mask value.
int GetStopForAxis(const TensorShape &inputShape, unsigned int axis, int startForAxis) const
StridedSliceDescriptor(const std::vector< int > &begin, const std::vector< int > &end, const std::vector< int > &stride)
std::vector< uint32_t > m_Multiples
The vector to multiply the input shape by.
bool operator==(const TileDescriptor &rhs) const
TileDescriptor(std::vector< uint32_t > multiples)
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
std::vector< unsigned int > m_OutputShape
bool m_OutputShapeEnabled
Output shape if it has been specified.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
TransposeConvolution2dDescriptor()
bool m_BiasEnabled
Enable/disable bias.
bool operator==(const TransposeConvolution2dDescriptor &rhs) const
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
bool operator==(const TransposeDescriptor &rhs) const
PermutationVector m_DimMappings
Indicates how to translate tensor elements from a given source into the target destination,...
TransposeDescriptor(const PermutationVector &dimMappings)
bool HasAxis() const
Returns true if an axis has been set.
int32_t GetAxis() const
Get the axis value.
Status SetViewOriginCoord(uint32_t view, uint32_t coord, uint32_t value)
@Brief Set the view origin coordinates.
uint32_t GetNumViews() const
Get the number of views.
const uint32_t * GetViewSizes(uint32_t idx) const
Get the view sizes at the int value idx.
friend void swap(ViewsDescriptor &first, ViewsDescriptor &second)
Swap the ViewsDescriptor value first and second.
uint32_t GetNumDimensions() const
Get the number of dimensions.
bool operator==(const ViewsDescriptor &rhs) const
const OriginsDescriptor & GetOrigins() const
Get the View Origins.
Status SetViewSize(uint32_t view, uint32_t coord, uint32_t value)
Set the size of the views.
ViewsDescriptor(uint32_t numViews, uint32_t numDimensions=4)
const uint32_t * GetViewOrigin(uint32_t idx) const
Get the view origin at the int value idx.
void SetAxis(int32_t axis)
Set the axis value.
ViewsDescriptor & operator=(ViewsDescriptor rhs)