ArmNN
 25.11
Loading...
Searching...
No Matches
ElementwiseBinaryLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7
8#include "LayerCloneBase.hpp"
9
10namespace armnn
11{
12
17
18std::unique_ptr<IWorkload> ElementwiseBinaryLayer::CreateWorkload(const IWorkloadFactory& factory) const
19{
21 SetAdditionalInfo(descriptor);
22
23 return factory.CreateWorkload(LayerType::ElementwiseBinary, descriptor, PrepInfoAndDesc(descriptor));
24}
25
30
31std::vector<TensorShape> ElementwiseBinaryLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
32{
33 if (inputShapes.size() != 2)
34 {
35 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
36 "\" - should be \"2\".");
37 }
38
39 TensorShape input0 = inputShapes[0];
40 TensorShape input1 = inputShapes[1];
41
42 if (inputShapes[0].GetNumDimensions() < inputShapes[1].GetNumDimensions())
43 {
44 input1 = inputShapes[0];
45 input0 = inputShapes[1];
46 }
47
48 unsigned int numDims = input0.GetNumDimensions();
49 unsigned int shiftedDims = input0.GetNumDimensions() - input1.GetNumDimensions();
50
51 // Get the max of the inputs.
52 std::vector<unsigned int> dims(numDims);
53 for (unsigned int i = shiftedDims; i < numDims; i++)
54 {
55 unsigned int dim0 = input0[i];
56 unsigned int dim1 = input1[i - shiftedDims];
57
58 // Validate inputs are broadcast compatible.
59 if (dim0 != dim1 && dim0 != 1 && dim1 != 1)
60 {
61 throw armnn::Exception("Dimensions should either match or one should be of size 1.");
62 }
63
64 dims[i] = std::max(dim0, dim1);
65 }
66
67 // Fill in the rest of the shifted dimensions.
68 for (unsigned int i = 0; i < shiftedDims; i++)
69 {
70 dims[i] = input0[i];
71 }
72
73 return std::vector<TensorShape>({ TensorShape(numDims, dims.data()) });
74}
75
77{
79
80 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
81
83
84 auto inferredShapes = InferOutputShapes({ GetInputSlot(0).GetTensorInfo().GetShape(),
86
87 if (inferredShapes.size() != 1)
88 {
89 throw armnn::LayerValidationException("inferredShapes has "
90 + std::to_string(inferredShapes.size()) +
91 " elements - should only have 1.");
92 }
93
95}
96
98{
99 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
100}
101} // namespace armnn
#define CHECK_LOCATION()
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
Returns inputShapes by default.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of ElementwiseBinaryLayer.
ElementwiseBinaryLayer(const ElementwiseBinaryDescriptor &param, const char *name)
Constructor to create a ElementwiseBinaryLayer.
ElementwiseBinaryLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the elementwiseBinary type.
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
LayerType GetType() const override
Returns the armnn::LayerType of this layer.
Definition Layer.hpp:286
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const ElementwiseBinaryDescriptor &param, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const ElementwiseBinaryDescriptor & GetParameters() const override
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
const char * GetLayerTypeAsCString(LayerType type)
A ElementwiseBinaryDescriptor for the ElementwiseBinaryLayer.