24.08
|
Go to the documentation of this file.
28 return CloneBase<ElementwiseBinaryLayer>(graph,
m_Param,
GetName());
33 if (inputShapes.size() != 2)
35 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
36 "\" - should be \"2\".");
42 if (inputShapes[0].GetNumDimensions() < inputShapes[1].GetNumDimensions())
44 input1 = inputShapes[0];
45 input0 = inputShapes[1];
52 std::vector<unsigned int> dims(numDims);
53 for (
unsigned int i = shiftedDims; i < numDims; i++)
55 unsigned int dim0 = input0[i];
56 unsigned int dim1 = input1[i - shiftedDims];
59 if (dim0 != dim1 && dim0 != 1 && dim1 != 1)
61 throw armnn::Exception(
"Dimensions should either match or one should be of size 1.");
64 dims[i] = std::max(dim0, dim1);
68 for (
unsigned int i = 0; i < shiftedDims; i++)
73 return std::vector<TensorShape>({
TensorShape(numDims, dims.data()) });
87 if (inferredShapes.size() != 1)
90 + std::to_string(inferredShapes.size()) +
91 " elements - should only have 1.");
const char * GetLayerTypeAsCString(LayerType type)
const TensorInfo & GetTensorInfo() const override
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
Returns inputShapes by default.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const ElementwiseBinaryDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
A ElementwiseBinaryDescriptor for the ElementwiseBinaryLayer.
ElementwiseBinaryDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of ElementwiseBinaryLayer.
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
ElementwiseBinaryLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the elementwiseBinary type.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Base class for all ArmNN exceptions so that users can filter to just those.
This layer represents a elementwiseBinary operation.
LayerType GetType() const override
Returns the armnn::LayerType of this layer.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
const TensorShape & GetShape() const
Copyright (c) 2021 ARM Limited and Contributors.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
ElementwiseBinaryLayer(const ElementwiseBinaryDescriptor ¶m, const char *name)
Constructor to create a ElementwiseBinaryLayer.
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0