ArmNN
 25.11
Loading...
Searching...
No Matches
NeonNormalizationFloatWorkload.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7
12
13#include <arm_compute/runtime/NEON/functions/NENormalizationLayer.h>
14
15using namespace armnn::armcomputetensorutils;
16
17namespace armnn
18{
19
20namespace
21{
22using ACLMemManagerOnDemand = std::shared_ptr<arm_compute::MemoryManagerOnDemand>;
23
24bool IsNeonNormalizationDescriptorSupported(const NormalizationDescriptor& parameters,
25 Optional<std::string&> reasonIfUnsupported)
26{
28 {
29 if (reasonIfUnsupported)
30 {
31 reasonIfUnsupported.value() = "Unsupported normalisation method type, only LocalBrightness is supported";
32 }
33 return false;
34 }
35 if (parameters.m_NormSize % 2 == 0)
36 {
37 if (reasonIfUnsupported)
38 {
39 reasonIfUnsupported.value() = "Normalization size must be an odd number.";
40 }
41 return false;
42 }
43
44 return true;
45}
46
47} // anonymous namespace
48
49arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo& input,
50 const TensorInfo& output,
51 const NormalizationDescriptor& descriptor)
52{
53 const arm_compute::TensorInfo aclInput = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
54 const arm_compute::TensorInfo aclOutput = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
55
56 arm_compute::NormalizationLayerInfo normalizationInfo = BuildArmComputeNormalizationLayerInfo(descriptor);
57
58 return arm_compute::NENormalizationLayer::validate(&aclInput, &aclOutput, normalizationInfo);
59}
60
62 const WorkloadInfo& info,
63 ACLMemManagerOnDemand& memoryManager)
65{
66 // Report Profiling Details
67 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonNormalizationWorkload_Construct",
68 descriptor.m_Parameters,
69 info,
70 this->GetGuid());
71
72 m_Data.ValidateInputsOutputs("NeonNormalizationFloatWorkload", 1, 1);
73 std::string reasonIfUnsupported;
74 if (!IsNeonNormalizationDescriptorSupported(m_Data.m_Parameters, Optional<std::string&>(reasonIfUnsupported)))
75 {
76 throw UnimplementedException(reasonIfUnsupported);
77 }
78
79 // Input and output tensors have to have the same dimensionality.
80 if (info.m_InputTensorInfos[0].GetShape()[1] != info.m_OutputTensorInfos[0].GetShape()[1]
81 || info.m_InputTensorInfos[0].GetShape()[0] != info.m_OutputTensorInfos[0].GetShape()[0]
82 || info.m_InputTensorInfos[0].GetShape()[3] != info.m_OutputTensorInfos[0].GetShape()[3]
83 || info.m_InputTensorInfos[0].GetShape()[2] != info.m_OutputTensorInfos[0].GetShape()[2])
84 {
85 throw InvalidArgumentException("Normalization requires input and output tensors to have equal dimensionality.");
86 }
87
88 arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
89 arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
90 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
91 input.info()->set_data_layout(aclDataLayout);
92 output.info()->set_data_layout(aclDataLayout);
93
94 const arm_compute::NormType normType =
95 ConvertNormalizationAlgorithmChannelToAclNormType(m_Data.m_Parameters.m_NormChannelType);
96 arm_compute::NormalizationLayerInfo normalizationInfo(normType,
97 m_Data.m_Parameters.m_NormSize,
98 m_Data.m_Parameters.m_Alpha,
99 m_Data.m_Parameters.m_Beta,
100 m_Data.m_Parameters.m_K,
101 false);
102 auto layer = std::make_unique<arm_compute::NENormalizationLayer>(memoryManager);
103 layer->configure(&input, &output, normalizationInfo);
104 m_NormalizationLayer.reset(layer.release());
105}
106
108{
109 ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonNormalizationFloatWorkload_Execute");
110 m_NormalizationLayer->run();
111}
112
114{
115 ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
116 this->m_Data.m_Inputs[slot] = tensorHandle;
117 try
118 {
119 Reconfigure();
120 }
122 {
123 // Cannot reconfigure, revert the slot back and throw the exception.
124 this->m_Data.m_Inputs[slot] = backupHandle;
125 throw e;
126 }
127}
128
129// Replace output tensor handle with the given TensorHandle
131{
132 ITensorHandle* backupHandle = this->m_Data.m_Inputs[slot];
133 this->m_Data.m_Inputs[slot] = tensorHandle;
134 try
135 {
136 Reconfigure();
137 }
139 {
140 // Cannot reconfigure, revert the slot back and throw the exception.
141 this->m_Data.m_Inputs[slot] = backupHandle;
142 throw e;
143 }
144}
145
146void NeonNormalizationFloatWorkload::Reconfigure()
147{
148 throw armnn::UnimplementedException("Reconfigure not implemented for this workload");
149}
150
151} //namespace armnn
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
QueueDescriptor m_Data
Definition Workload.hpp:74
NeonNormalizationFloatWorkload(const NormalizationQueueDescriptor &descriptor, const WorkloadInfo &info, std::shared_ptr< arm_compute::MemoryManagerOnDemand > &memoryManager)
void ReplaceInputTensorHandle(ITensorHandle *tensorHandle, unsigned int slot) override
void ReplaceOutputTensorHandle(ITensorHandle *tensorHandle, unsigned int slot) override
Copyright (c) 2021 ARM Limited and Contributors.
arm_compute::Status NeonNormalizationWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const NormalizationDescriptor &descriptor)
arm_compute::NormType ConvertNormalizationAlgorithmChannelToAclNormType(NormalizationAlgorithmChannel channelType)
DestType PolymorphicDowncast(SourceType *value)
Polymorphic downcast for build in pointers only.
TypedWorkload< QueueDescriptor, armnn::DataType::Float16, armnn::DataType::Float32 > FloatWorkload
Definition Workload.hpp:195
@ LocalBrightness
Krichevsky 2012: Local Brightness Normalization.
Definition Types.hpp:217
std::shared_ptr< arm_compute::MemoryManagerOnDemand > ACLMemManagerOnDemand
A NormalizationDescriptor for the NormalizationLayer.
NormalizationAlgorithmMethod m_NormMethodType
Normalization method algorithm to use (LocalBrightness, LocalContrast).
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_NormSize
Depth radius value.
Contains information about TensorInfos of a layer.