ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
NeonWorkloadFactory.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "NeonBackendId.hpp"
8 #include "NeonTensorHandle.hpp"
10 
11 #include <Layer.hpp>
12 
13 #include <armnn/Utils.hpp>
17 
22 
25 
26 namespace armnn
27 {
28 
29 namespace
30 {
31 static const BackendId s_Id{NeonBackendId()};
32 }
33 
35  Optional<DataType> dataType,
36  std::string& outReasonIfUnsupported)
37 {
38  return IWorkloadFactory::IsLayerSupported(s_Id, layer, dataType, outReasonIfUnsupported);
39 }
40 
42  Optional<DataType> dataType,
43  std::string& outReasonIfUnsupported,
44  const ModelOptions& modelOptions)
45 {
46  return IWorkloadFactory::IsLayerSupported(s_Id, layer, dataType, outReasonIfUnsupported, modelOptions);
47 }
48 
50 {
51  return s_Id;
52 }
53 
54 void NeonWorkloadFactory::SetNumberOfThreads()
55 {
56  if (m_ModelContextPtr)
57  {
58  const unsigned int MIN_THREADS = 1;
59  const unsigned int MAX_THREADS = 64;
60 
61  // Set the number of threads to be used if the user has set NumberOfThreads param
62  // Only set if within limit or valid input
63  auto modelOptions = dynamic_cast<NeonBackendModelContext*>(m_ModelContextPtr.get());
64  auto numberOfThreads = modelOptions->GetNumberOfThreads();
65 
66  if (numberOfThreads != 0 && numberOfThreads >= MIN_THREADS && numberOfThreads <= MAX_THREADS)
67  {
68  arm_compute::Scheduler::get().set_num_threads(numberOfThreads);
69  }
70  }
71 }
72 
73 NeonWorkloadFactory::NeonWorkloadFactory(const std::shared_ptr<NeonMemoryManager>& memoryManager)
74  : m_MemoryManager(memoryManager), m_ModelContextPtr(IBackendInternal::IBackendSpecificModelContextPtr{})
75 {
76  SetNumberOfThreads();
77 }
78 
79 NeonWorkloadFactory::NeonWorkloadFactory(const std::shared_ptr<NeonMemoryManager>& memoryManager,
81  : m_MemoryManager(memoryManager), m_ModelContextPtr(modelContextPtr)
82 {
83  SetNumberOfThreads();
84 }
85 
86 std::unique_ptr<ITensorHandle> NeonWorkloadFactory::CreateSubTensorHandle(ITensorHandle& parent,
87  TensorShape const& subTensorShape,
88  unsigned int const* subTensorOrigin) const
89 {
90  const arm_compute::TensorShape shape = armcomputetensorutils::BuildArmComputeTensorShape(subTensorShape);
91 
93  coords.set_num_dimensions(subTensorShape.GetNumDimensions());
94  for (unsigned int i = 0; i < subTensorShape.GetNumDimensions(); i++)
95  {
96  // Arm compute indexes tensor coords in reverse order.
97  unsigned int revertedIndex = subTensorShape.GetNumDimensions() - i - 1;
98  coords.set(i, armnn::numeric_cast<int>(subTensorOrigin[revertedIndex]));
99  }
100 
101  const arm_compute::TensorShape parentShape = armcomputetensorutils::BuildArmComputeTensorShape(parent.GetShape());
102  if (!::arm_compute::error_on_invalid_subtensor(__func__, __FILE__, __LINE__, parentShape, coords, shape))
103  {
104  return nullptr;
105  }
106 
107  return std::make_unique<NeonSubTensorHandle>(
108  PolymorphicDowncast<IAclTensorHandle*>(&parent), shape, coords);
109 }
110 
111 std::unique_ptr<ITensorHandle> NeonWorkloadFactory::CreateTensorHandle(const TensorInfo& tensorInfo,
112  const bool IsMemoryManaged) const
113 {
114  auto tensorHandle = std::make_unique<NeonTensorHandle>(tensorInfo);
115  if (IsMemoryManaged)
116  {
117  tensorHandle->SetMemoryGroup(m_MemoryManager->GetInterLayerMemoryGroup());
118  }
119  return tensorHandle;
120 }
121 
122 std::unique_ptr<ITensorHandle> NeonWorkloadFactory::CreateTensorHandle(const TensorInfo& tensorInfo,
123  DataLayout dataLayout,
124  const bool IsMemoryManaged) const
125 {
126  auto tensorHandle = std::make_unique<NeonTensorHandle>(tensorInfo, dataLayout);
127  if (IsMemoryManaged)
128  {
129  tensorHandle->SetMemoryGroup(m_MemoryManager->GetInterLayerMemoryGroup());
130  }
131  return tensorHandle;
132 }
133 
134 std::unique_ptr<IWorkload> NeonWorkloadFactory::CreateWorkload(LayerType type,
135  const QueueDescriptor& descriptor,
136  const WorkloadInfo& info) const
137 {
138  switch(type)
139  {
140  case LayerType::Activation :
141  {
142  auto activationQueueDescriptor = PolymorphicDowncast<const ActivationQueueDescriptor*>(&descriptor);
143  return std::make_unique<NeonActivationWorkload>(*activationQueueDescriptor, info);
144  }
145  case LayerType::Addition :
146  {
147  auto additionQueueDescriptor = PolymorphicDowncast<const AdditionQueueDescriptor*>(&descriptor);
148  return std::make_unique<NeonAdditionWorkload>(*additionQueueDescriptor, info);
149  }
150  case LayerType::ArgMinMax :
151  {
152  auto argMinMaxQueueDescriptor = PolymorphicDowncast<const ArgMinMaxQueueDescriptor*>(&descriptor);
153  return std::make_unique<NeonArgMinMaxWorkload>(*argMinMaxQueueDescriptor, info);
154  }
156  {
157  auto batchMatMulQueueDescriptor = PolymorphicDowncast<const BatchMatMulQueueDescriptor*>(&descriptor);
158  bool isFastMathEnabled = false;
159  if (m_ModelContextPtr)
160  {
161  if (m_ModelContextPtr.get() != nullptr)
162  {
163  auto modelOptions = dynamic_cast<NeonBackendModelContext*>(m_ModelContextPtr.get());
164  if (modelOptions)
165  {
166  isFastMathEnabled = modelOptions->IsFastMathEnabled();
167  }
168  }
169  }
170  return std::make_unique<NeonBatchMatMulWorkload>(*batchMatMulQueueDescriptor, info, isFastMathEnabled);
171  }
173  {
174  auto batchNormalizationQueueDescriptor
175  = PolymorphicDowncast<const BatchNormalizationQueueDescriptor*>(&descriptor);
176  return std::make_unique<NeonBatchNormalizationWorkload>(*batchNormalizationQueueDescriptor, info);
177  }
179  {
180  auto batchToSpaceNdQueueDescriptor
181  = PolymorphicDowncast<const BatchToSpaceNdQueueDescriptor*>(&descriptor);
182  return std::make_unique<NeonBatchToSpaceNdWorkload>(*batchToSpaceNdQueueDescriptor, info);
183  }
184  case LayerType::Cast :
185  {
186  auto castQueueDescriptor = PolymorphicDowncast<const CastQueueDescriptor*>(&descriptor);
187  return std::make_unique<NeonCastWorkload>(*castQueueDescriptor, info);
188  }
190  {
191  auto channelShuffleQueueDescriptor = PolymorphicDowncast<const ChannelShuffleQueueDescriptor*>(&descriptor);
192  return std::make_unique<NeonChannelShuffleWorkload>(*channelShuffleQueueDescriptor, info);
193  }
194  case LayerType::Comparison :
195  {
196  auto comparisonQueueDescriptor = PolymorphicDowncast<const ComparisonQueueDescriptor*>(&descriptor);
197  return std::make_unique<NeonComparisonWorkload>(*comparisonQueueDescriptor, info);
198  }
199  case LayerType::Concat :
200  {
201  auto concatQueueDescriptor = PolymorphicDowncast<const ConcatQueueDescriptor*>(&descriptor);
202  return std::make_unique<NeonConcatWorkload>(*concatQueueDescriptor, info);
203  }
204  case LayerType::Constant :
205  {
206  auto constantQueueDescriptor = PolymorphicDowncast<const ConstantQueueDescriptor*>(&descriptor);
207  return std::make_unique<NeonConstantWorkload>(*constantQueueDescriptor, info);
208  }
210  {
211  auto convertFp16ToFp32QueueDescriptor
212  = PolymorphicDowncast<const ConvertFp16ToFp32QueueDescriptor*>(&descriptor);
213  return std::make_unique<NeonConvertFp16ToFp32Workload>(*convertFp16ToFp32QueueDescriptor, info);
214  }
216  {
217  auto convertFp32ToFp16QueueDescriptor
218  = PolymorphicDowncast<const ConvertFp32ToFp16QueueDescriptor*>(&descriptor);
219  return std::make_unique<NeonConvertFp32ToFp16Workload>(*convertFp32ToFp16QueueDescriptor, info);
220  }
222  {
223  auto convolution2dQueueDescriptor = PolymorphicDowncast<const Convolution2dQueueDescriptor*>(&descriptor);
224  bool isFastMathEnabled = false;
225  if (m_ModelContextPtr)
226  {
227  if (m_ModelContextPtr.get() != nullptr)
228  {
229  auto modelOptions = dynamic_cast<NeonBackendModelContext*>(m_ModelContextPtr.get());
230  if (modelOptions)
231  {
232  isFastMathEnabled = modelOptions->IsFastMathEnabled();
233  }
234  }
235  }
236  return std::make_unique<NeonConvolution2dWorkload>(*convolution2dQueueDescriptor,
237  info,
238  m_MemoryManager->GetIntraLayerManager(),
239  isFastMathEnabled);
240  }
242  {
243  auto convolution3dQueueDescriptor = PolymorphicDowncast<const Convolution3dQueueDescriptor*>(&descriptor);
244  bool isFastMathEnabled = false;
245  if (m_ModelContextPtr)
246  {
247  if (m_ModelContextPtr.get() != nullptr)
248  {
249  auto modelOptions = dynamic_cast<NeonBackendModelContext*>(m_ModelContextPtr.get());
250  if (modelOptions)
251  {
252  isFastMathEnabled = modelOptions->IsFastMathEnabled();
253  }
254  }
255  }
256  return std::make_unique<NeonConvolution3dWorkload>(*convolution3dQueueDescriptor,
257  info,
258  m_MemoryManager->GetIntraLayerManager(),
259  isFastMathEnabled);
260  }
261  case LayerType::Debug :
262  {
263  auto debugQueueDescriptor = PolymorphicDowncast<const DebugQueueDescriptor*>(&descriptor);
264  return MakeWorkloadHelper<NullWorkload, NullWorkload>(*debugQueueDescriptor, info);
265  }
267  {
268  auto depthToSpaceQueueDescriptor = PolymorphicDowncast<const DepthToSpaceQueueDescriptor*>(&descriptor);
269  return std::make_unique<NeonDepthToSpaceWorkload>(*depthToSpaceQueueDescriptor, info);
270  }
272  {
273  auto depthwiseConvolution2dQueueDescriptor
274  = PolymorphicDowncast<const DepthwiseConvolution2dQueueDescriptor*>(&descriptor);
275  return std::make_unique<NeonDepthwiseConvolutionWorkload>(*depthwiseConvolution2dQueueDescriptor, info);
276  }
277  case LayerType::Dequantize :
278  {
279  auto dequantizeQueueDescriptor = PolymorphicDowncast<const DequantizeQueueDescriptor*>(&descriptor);
280  return std::make_unique<NeonDequantizeWorkload>(*dequantizeQueueDescriptor, info);
281  }
283  {
284  auto detectionPostProcessQueueDescriptor
285  = PolymorphicDowncast<const DetectionPostProcessQueueDescriptor*>(&descriptor);
286  return MakeWorkloadHelper<NullWorkload, NullWorkload>(*detectionPostProcessQueueDescriptor, info);
287  }
288  case LayerType::Division :
289  {
290  auto divisionQueueDescriptor = PolymorphicDowncast<const DivisionQueueDescriptor*>(&descriptor);
291  return std::make_unique<NeonDivisionWorkload>(*divisionQueueDescriptor, info);
292  }
294  {
295  auto elementwiseBinaryQueueDescriptor
296  = PolymorphicDowncast<const ElementwiseBinaryQueueDescriptor*>(&descriptor);
297  switch (elementwiseBinaryQueueDescriptor->m_Parameters.m_Operation)
298  {
300  {
301  AdditionQueueDescriptor additionQueueDescriptor;
302  additionQueueDescriptor.m_Inputs = descriptor.m_Inputs;
303  additionQueueDescriptor.m_Outputs = descriptor.m_Outputs;
304  return std::make_unique<NeonAdditionWorkload>(additionQueueDescriptor, info);
305  }
307  {
308  DivisionQueueDescriptor divisionQueueDescriptor;
309  divisionQueueDescriptor.m_Inputs = descriptor.m_Inputs;
310  divisionQueueDescriptor.m_Outputs = descriptor.m_Outputs;
311  return std::make_unique<NeonDivisionWorkload>(divisionQueueDescriptor, info);
312  }
314  {
315  DivisionQueueDescriptor floorDivQueueDescriptor;
316  floorDivQueueDescriptor.m_Inputs = descriptor.m_Inputs;
317  floorDivQueueDescriptor.m_Outputs = descriptor.m_Outputs;
318  return std::make_unique<NeonFloorDivWorkload>(floorDivQueueDescriptor, info);
319  }
321  {
322  MaximumQueueDescriptor maximumQueueDescriptor;
323  maximumQueueDescriptor.m_Inputs = descriptor.m_Inputs;
324  maximumQueueDescriptor.m_Outputs = descriptor.m_Outputs;
325  return std::make_unique<NeonMaximumWorkload>(maximumQueueDescriptor, info);
326  }
328  {
329  MinimumQueueDescriptor minimumQueueDescriptor;
330  minimumQueueDescriptor.m_Inputs = descriptor.m_Inputs;
331  minimumQueueDescriptor.m_Outputs = descriptor.m_Outputs;
332  return std::make_unique<NeonMinimumWorkload>(minimumQueueDescriptor, info);
333  }
335  {
336  MultiplicationQueueDescriptor multiplicationQueueDescriptor;
337  multiplicationQueueDescriptor.m_Inputs = descriptor.m_Inputs;
338  multiplicationQueueDescriptor.m_Outputs = descriptor.m_Outputs;
339  return std::make_unique<NeonMultiplicationWorkload>(multiplicationQueueDescriptor, info);
340  }
343  {
344  return std::make_unique<NeonElementwiseBinaryWorkload>(*elementwiseBinaryQueueDescriptor, info);
345  }
347  {
348  SubtractionQueueDescriptor subtractionQueueDescriptor;
349  subtractionQueueDescriptor.m_Inputs = descriptor.m_Inputs;
350  subtractionQueueDescriptor.m_Outputs = descriptor.m_Outputs;
351  return std::make_unique<NeonSubtractionWorkload>(subtractionQueueDescriptor, info);
352  }
353  default:
354  return nullptr;
355  }
356  }
358  {
359  auto elementwiseUnaryQueueDescriptor
360  = PolymorphicDowncast<const ElementwiseUnaryQueueDescriptor*>(&descriptor);
361  switch(elementwiseUnaryQueueDescriptor->m_Parameters.m_Operation)
362  {
363  case UnaryOperation::Abs:
364  {
365  AbsQueueDescriptor absQueueDescriptor;
366  absQueueDescriptor.m_Inputs = elementwiseUnaryQueueDescriptor->m_Inputs;
367  absQueueDescriptor.m_Outputs = elementwiseUnaryQueueDescriptor->m_Outputs;
368  return std::make_unique<NeonAbsWorkload>(absQueueDescriptor, info);
369  }
370  case UnaryOperation::Exp:
371  return std::make_unique<NeonExpWorkload>(*elementwiseUnaryQueueDescriptor, info);
373  return std::make_unique<NeonLogicalNotWorkload>(*elementwiseUnaryQueueDescriptor, info);
374  case UnaryOperation::Log:
375  return std::make_unique<NeonLogWorkload>(*elementwiseUnaryQueueDescriptor, info);
376  case UnaryOperation::Neg:
377  return std::make_unique<NeonNegWorkload>(*elementwiseUnaryQueueDescriptor, info);
379  {
380  RsqrtQueueDescriptor rsqrtQueueDescriptor;
381  rsqrtQueueDescriptor.m_Inputs = elementwiseUnaryQueueDescriptor->m_Inputs;
382  rsqrtQueueDescriptor.m_Outputs = elementwiseUnaryQueueDescriptor->m_Outputs;
383  return std::make_unique<NeonRsqrtWorkload>(rsqrtQueueDescriptor, info);
384  }
385  case UnaryOperation::Sin:
386  return std::make_unique<NeonSinWorkload>(*elementwiseUnaryQueueDescriptor, info);
388  return std::make_unique<NeonSqrtWorkload>(*elementwiseUnaryQueueDescriptor, info);
389  default:
390  return nullptr;
391  }
392  }
393  case LayerType::Fill :
394  {
395  auto fillQueueDescriptor = PolymorphicDowncast<const FillQueueDescriptor*>(&descriptor);
396  return std::make_unique<NeonFillWorkload>(*fillQueueDescriptor, info);
397  }
398  case LayerType::Floor :
399  {
400  auto floorQueueDescriptor = PolymorphicDowncast<const FloorQueueDescriptor*>(&descriptor);
401  return MakeWorkloadHelper<NeonFloorFloatWorkload, NullWorkload>(*floorQueueDescriptor, info);
402  }
404  {
405  auto fullyConnectedQueueDescriptor = PolymorphicDowncast<const FullyConnectedQueueDescriptor*>(&descriptor);
406  return std::make_unique<NeonFullyConnectedWorkload>(*fullyConnectedQueueDescriptor,
407  info,
408  m_MemoryManager->GetIntraLayerManager());
409  }
410  case LayerType::Fused :
411  {
412  auto fusedQueueDescriptor = PolymorphicDowncast<const FusedQueueDescriptor*>(&descriptor);
413  return std::make_unique<NeonFusedWorkload>(*fusedQueueDescriptor, info);
414  }
415  case LayerType::Gather :
416  {
417  auto gatherQueueDescriptor = PolymorphicDowncast<const GatherQueueDescriptor*>(&descriptor);
418  return std::make_unique<NeonGatherWorkload>(*gatherQueueDescriptor, info);
419  }
420  case LayerType::GatherNd :
421  {
422  auto gatherNdQueueDescriptor = PolymorphicDowncast<const GatherNdQueueDescriptor*>(&descriptor);
423  return std::make_unique<NeonGatherNdWorkload>(*gatherNdQueueDescriptor, info);
424  }
425  case LayerType::Input :
426  {
427  auto inputQueueDescriptor = PolymorphicDowncast<const InputQueueDescriptor*>(&descriptor);
428  return std::make_unique<CopyMemGenericWorkload>(*inputQueueDescriptor, info);
429  }
431  {
432  auto instanceNormalizationQueueDescriptor
433  = PolymorphicDowncast<const InstanceNormalizationQueueDescriptor*>(&descriptor);
434  return std::make_unique<NeonInstanceNormalizationWorkload>(*instanceNormalizationQueueDescriptor, info);
435  }
437  {
438  auto l2NormalizationQueueDescriptor
439  = PolymorphicDowncast<const L2NormalizationQueueDescriptor*>(&descriptor);
440  return MakeWorkloadHelper<NeonL2NormalizationFloatWorkload, NullWorkload>
441  (*l2NormalizationQueueDescriptor, info, m_MemoryManager->GetIntraLayerManager());
442  }
443  case LayerType::LogSoftmax :
444  {
445  auto logSoftmaxQueueDescriptor = PolymorphicDowncast<const LogSoftmaxQueueDescriptor*>(&descriptor);
446  return std::make_unique<NeonLogSoftmaxWorkload>(*logSoftmaxQueueDescriptor,
447  info,
448  m_MemoryManager->GetIntraLayerManager());
449  }
451  {
452  auto logicalBinaryQueueDescriptor = PolymorphicDowncast<const LogicalBinaryQueueDescriptor*>(&descriptor);
453  switch(logicalBinaryQueueDescriptor->m_Parameters.m_Operation)
454  {
456  return std::make_unique<NeonLogicalAndWorkload>(*logicalBinaryQueueDescriptor, info);
458  return std::make_unique<NeonLogicalOrWorkload>(*logicalBinaryQueueDescriptor, info);
459  default:
460  return nullptr;
461  }
462  }
463  case LayerType::Lstm :
464  {
465  auto lstmQueueDescriptor = PolymorphicDowncast<const LstmQueueDescriptor*>(&descriptor);
466  return MakeWorkloadHelper<NeonLstmFloatWorkload, NullWorkload>(*lstmQueueDescriptor, info);
467  }
468  case LayerType::Maximum :
469  {
470  auto maximumQueueDescriptor = PolymorphicDowncast<const MaximumQueueDescriptor*>(&descriptor);
471  return std::make_unique<NeonMaximumWorkload>(*maximumQueueDescriptor, info);
472  }
473  case LayerType::Mean :
474  {
475  auto meanQueueDescriptor = PolymorphicDowncast<const MeanQueueDescriptor*>(&descriptor);
476  return std::make_unique<NeonMeanWorkload>(*meanQueueDescriptor, info);
477  }
478  case LayerType::MemCopy :
479  {
480  auto memCopyQueueDescriptor = PolymorphicDowncast<const MemCopyQueueDescriptor*>(&descriptor);
481  if (memCopyQueueDescriptor->m_Inputs.empty() || !memCopyQueueDescriptor->m_Inputs[0])
482  {
483  throw InvalidArgumentException("NeonWorkloadFactory: Invalid null input for MemCopy workload");
484  }
485  return MakeWorkloadHelper<CopyMemGenericWorkload, CopyMemGenericWorkload>(*memCopyQueueDescriptor, info);
486  }
487  case LayerType::MemImport :
488  {
489  auto memImportQueueDescriptor = PolymorphicDowncast<const MemImportQueueDescriptor*>(&descriptor);
490  if (memImportQueueDescriptor->m_Inputs.empty() || !memImportQueueDescriptor->m_Inputs[0])
491  {
492  throw InvalidArgumentException("NeonWorkloadFactory: Invalid null input for MemImport workload");
493  }
494  return std::make_unique<ImportMemGenericWorkload>(*memImportQueueDescriptor, info);
495  }
496  case LayerType::Minimum :
497  {
498  auto minimumQueueDescriptor = PolymorphicDowncast<const MinimumQueueDescriptor*>(&descriptor);
499  return std::make_unique<NeonMinimumWorkload>(*minimumQueueDescriptor, info);
500  }
502  {
503  auto multiplicationQueueDescriptor = PolymorphicDowncast<const MultiplicationQueueDescriptor*>(&descriptor);
504  return std::make_unique<NeonMultiplicationWorkload>(*multiplicationQueueDescriptor, info);
505  }
507  {
508  auto normalizationQueueDescriptor = PolymorphicDowncast<const NormalizationQueueDescriptor*>(&descriptor);
509  return MakeWorkloadHelper<NeonNormalizationFloatWorkload, NullWorkload>
510  (*normalizationQueueDescriptor, info, m_MemoryManager->GetIntraLayerManager());
511  }
512  case LayerType::Output :
513  {
514  auto outputQueueDescriptor = PolymorphicDowncast<const OutputQueueDescriptor*>(&descriptor);
515  return std::make_unique<CopyMemGenericWorkload>(*outputQueueDescriptor, info);
516  }
517  case LayerType::Pad :
518  {
519  auto padQueueDescriptor = PolymorphicDowncast<const PadQueueDescriptor*>(&descriptor);
520  return std::make_unique<NeonPadWorkload>(*padQueueDescriptor, info);
521  }
522  case LayerType::Permute :
523  {
524  auto permuteQueueDescriptor = PolymorphicDowncast<const PermuteQueueDescriptor*>(&descriptor);
525  return std::make_unique<NeonPermuteWorkload>(*permuteQueueDescriptor, info);
526  }
527  case LayerType::Pooling2d :
528  {
529  auto pooling2dQueueDescriptor = PolymorphicDowncast<const Pooling2dQueueDescriptor*>(&descriptor);
530  return std::make_unique<NeonPooling2dWorkload>(*pooling2dQueueDescriptor, info);
531  }
532  case LayerType::Pooling3d :
533  {
534  auto pooling3dQueueDescriptor = PolymorphicDowncast<const Pooling3dQueueDescriptor*>(&descriptor);
535  return std::make_unique<NeonPooling3dWorkload>(*pooling3dQueueDescriptor, info);
536  }
538  {
539  auto preCompiledQueueDescriptor = PolymorphicDowncast<const PreCompiledQueueDescriptor*>(&descriptor);
540  return MakeWorkloadHelper<NullWorkload, NullWorkload>(*preCompiledQueueDescriptor, info);
541  }
542  case LayerType::Prelu :
543  {
544  auto preluQueueDescriptor = PolymorphicDowncast<const PreluQueueDescriptor*>(&descriptor);
545  return std::make_unique<NeonPreluWorkload>(*preluQueueDescriptor, info);
546  }
547  case LayerType::QLstm :
548  {
549  auto qLstmQueueDescriptor = PolymorphicDowncast<const QLstmQueueDescriptor*>(&descriptor);
550  return std::make_unique<NeonQLstmWorkload>(*qLstmQueueDescriptor, info);
551  }
552  case LayerType::Quantize :
553  {
554  auto quantizeQueueDescriptor = PolymorphicDowncast<const QuantizeQueueDescriptor*>(&descriptor);
555  return std::make_unique<NeonQuantizeWorkload>(*quantizeQueueDescriptor, info);
556  }
558  {
559  auto quantizedLstmQueueDescriptor = PolymorphicDowncast<const QuantizedLstmQueueDescriptor*>(&descriptor);
560  return std::make_unique<NeonQuantizedLstmWorkload>(*quantizedLstmQueueDescriptor, info);
561  }
562  case LayerType::Rank :
563  {
564  auto rankQueueDescriptor = PolymorphicDowncast<const RankQueueDescriptor*>(&descriptor);
565  return std::make_unique<NeonRankWorkload>(*rankQueueDescriptor, info);
566  }
567  case LayerType::Reduce :
568  {
569  auto reduceQueueDescriptor = PolymorphicDowncast<const ReduceQueueDescriptor*>(&descriptor);
570  return std::make_unique<NeonReduceWorkload>(*reduceQueueDescriptor, info);
571  }
572  case LayerType::Reshape :
573  {
574  auto reshapeQueueDescriptor = PolymorphicDowncast<const ReshapeQueueDescriptor*>(&descriptor);
575  return std::make_unique<NeonReshapeWorkload>(*reshapeQueueDescriptor, info);
576  }
577  case LayerType::Resize :
578  {
579  auto resizeQueueDescriptor = PolymorphicDowncast<const ResizeQueueDescriptor*>(&descriptor);
580  return std::make_unique<NeonResizeWorkload>(*resizeQueueDescriptor, info);
581  }
582  case LayerType::ReverseV2 :
583  {
584  auto reverseV2QueueDescriptor = PolymorphicDowncast<const ReverseV2QueueDescriptor*>(&descriptor);
585  return std::make_unique<NeonReverseV2Workload>(*reverseV2QueueDescriptor, info);
586  }
587  case LayerType::Slice :
588  {
589  auto sliceQueueDescriptor = PolymorphicDowncast<const SliceQueueDescriptor*>(&descriptor);
590  return std::make_unique<NeonSliceWorkload>(*sliceQueueDescriptor, info);
591  }
592  case LayerType::Softmax :
593  {
594  auto softmaxQueueDescriptor = PolymorphicDowncast<const SoftmaxQueueDescriptor*>(&descriptor);
595  return std::make_unique<NeonSoftmaxWorkload>(*softmaxQueueDescriptor,
596  info,
597  m_MemoryManager->GetIntraLayerManager());
598  }
600  {
601  auto spaceToBatchNdQueueDescriptor
602  = PolymorphicDowncast<const SpaceToBatchNdQueueDescriptor*>(&descriptor);
603  return std::make_unique<NeonSpaceToBatchNdWorkload>(*spaceToBatchNdQueueDescriptor, info);
604  }
606  {
607  auto spaceToDepthQueueDescriptor = PolymorphicDowncast<const SpaceToDepthQueueDescriptor*>(&descriptor);
608  return std::make_unique<NeonSpaceToDepthWorkload>(*spaceToDepthQueueDescriptor, info);
609  }
610  case LayerType::Splitter :
611  {
612  auto splitterQueueDescriptor = PolymorphicDowncast<const SplitterQueueDescriptor*>(&descriptor);
613  return std::make_unique<NeonSplitterWorkload>(*splitterQueueDescriptor, info);
614  }
615  case LayerType::Stack :
616  {
617  auto stackQueueDescriptor = PolymorphicDowncast<const StackQueueDescriptor*>(&descriptor);
618  return std::make_unique<NeonStackWorkload>(*stackQueueDescriptor, info);
619  }
621  {
622  auto stridedSliceQueueDescriptor = PolymorphicDowncast<const StridedSliceQueueDescriptor*>(&descriptor);
623  return std::make_unique<NeonStridedSliceWorkload>(*stridedSliceQueueDescriptor, info);
624  }
626  {
627  auto subtractionQueueDescriptor = PolymorphicDowncast<const SubtractionQueueDescriptor*>(&descriptor);
628  return std::make_unique<NeonSubtractionWorkload>(*subtractionQueueDescriptor, info);
629  }
630  case LayerType::Tile:
631  {
632  auto tileQueueDescriptor = PolymorphicDowncast<const TileQueueDescriptor*>(&descriptor);
633  return std::make_unique<NeonTileWorkload>(*tileQueueDescriptor, info);
634  }
635  case LayerType::Transpose :
636  {
637  auto transposeQueueDescriptor = PolymorphicDowncast<const TransposeQueueDescriptor*>(&descriptor);
638  return std::make_unique<NeonTransposeWorkload>(*transposeQueueDescriptor, info);
639  }
641  {
642  auto transposeConvolution2dQueueDescriptor
643  = PolymorphicDowncast<const TransposeConvolution2dQueueDescriptor*>(&descriptor);
644  return std::make_unique<NeonTransposeConvolution2dWorkload>(*transposeConvolution2dQueueDescriptor,
645  info,
646  m_MemoryManager->GetIntraLayerManager());
647  }
649  {
650  auto desc = PolymorphicDowncast<const UnidirectionalSequenceLstmQueueDescriptor*>(&descriptor);
651  if ((info.m_InputTensorInfos[0].GetDataType() == armnn::DataType::Float32) &&
652  (info.m_InputTensorInfos[1].GetDataType() == armnn::DataType::Float32) &&
653  (info.m_InputTensorInfos[2].GetDataType() == armnn::DataType::Float32) &&
654  (info.m_OutputTensorInfos[0].GetDataType() == armnn::DataType::Float32) &&
655  (info.m_OutputTensorInfos[1].GetDataType() == armnn::DataType::Float32) &&
656  (info.m_OutputTensorInfos[2].GetDataType() == armnn::DataType::Float32))
657  {
658  return std::make_unique<NeonUnidirectionalSequenceLstmFloatWorkload>(*desc, info);
659  }
660  else
661  {
662  return std::make_unique<NeonUnidirectionalSequenceLstmWorkload>(*desc, info);
663  }
664  }
665  default:
666  return nullptr;
667  }
668 }
669 
670 } // namespace armnn
std::shared_ptr< IBackendModelContext > IBackendSpecificModelContextPtr
Interface for a layer that is connectable to other layers via InputSlots and OutputSlots.
Definition: INetwork.hpp:81
virtual TensorShape GetShape() const =0
Get the number of elements for each dimension ordered from slowest iterating dimension to fastest ite...
static bool IsLayerSupported(const BackendId &backendId, const IConnectableLayer &layer, Optional< DataType > dataType, std::string &outReasonIfUnsupported)
The NeonBackendModelContext is used to pass in Neon specific backend ModelOptions.
NeonWorkloadFactory(const std::shared_ptr< NeonMemoryManager > &memoryManager)
std::unique_ptr< ITensorHandle > CreateTensorHandle(const TensorInfo &tensorInfo, const bool IsMemoryManaged=true) const override
std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const override
Backends should implement their own CreateWorkload function with a switch statement.
static bool IsLayerSupported(const Layer &layer, Optional< DataType > dataType, std::string &outReasonIfUnsupported)
std::unique_ptr< ITensorHandle > CreateSubTensorHandle(ITensorHandle &parent, TensorShape const &subTensorShape, unsigned int const *subTensorOrigin) const override
const BackendId & GetBackendId() const override
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
Copyright (c) 2021 ARM Limited and Contributors.
constexpr const char * NeonBackendId()
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition: Types.hpp:494
std::vector< BackendOptions > ModelOptions
std::array< unsigned int, MaxNumOfTensorDimensions > Coordinates
DataLayout
Definition: Types.hpp:63
std::vector< ITensorHandle * > m_Inputs
std::vector< ITensorHandle * > m_Outputs
Contains information about TensorInfos of a layer.