ArmNN
 25.11
Loading...
Searching...
No Matches
LogicalBinaryLayer Class Reference

This layer represents a Logical Binary operation. More...

#include <LogicalBinaryLayer.hpp>

Inheritance diagram for LogicalBinaryLayer:
[legend]
Collaboration diagram for LogicalBinaryLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the LogicalBinary type.
LogicalBinaryLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer.
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of LogicalBinaryLayer.
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer.
Public Member Functions inherited from LayerWithParameters< LogicalBinaryDescriptor >
const LogicalBinaryDescriptorGetParameters () const override
 If the layer has a descriptor return it.
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
const std::string & GetNameStr () const
const OutputHandlerGetOutputHandler (unsigned int i=0) const
OutputHandlerGetOutputHandler (unsigned int i=0)
ShapeInferenceMethod GetShapeInferenceMethod () const
bool GetAllowExpandedDims () const
const std::vector< InputSlot > & GetInputSlots () const
const std::vector< OutputSlot > & GetOutputSlots () const
std::vector< InputSlot >::iterator BeginInputSlots ()
std::vector< InputSlot >::iterator EndInputSlots ()
std::vector< OutputSlot >::iterator BeginOutputSlots ()
std::vector< OutputSlot >::iterator EndOutputSlots ()
bool IsOutputUnconnected ()
void ResetPriority () const
LayerPriority GetPriority () const
LayerType GetType () const override
 Returns the armnn::LayerType of this layer.
DataType GetDataType () const
const BackendIdGetBackendId () const
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer.
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
virtual void ReleaseConstantData ()
template<typename Op>
void OperateOnConstantTensors (Op op)
const char * GetName () const override
 Returns the name of the layer.
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots.
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots.
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index.
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index.
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index.
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index.
void SetGuid (LayerGuid guid)
LayerGuid GetGuid () const final
 Returns the unique id of the layer.
void AddRelatedLayerName (const std::string layerName)
const std::list< std::string > & GetRelatedLayerNames ()
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer.
Optional< BackendIdGetBackendHint () const
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
void SetAllowExpandedDims (bool allowExpandedDims)
template<typename T>
std::shared_ptr< T > GetAdditionalInformation () const
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)

Protected Member Functions

 LogicalBinaryLayer (const LogicalBinaryDescriptor &param, const char *name)
 Constructor to create a LogicalBinaryLayer.
 ~LogicalBinaryLayer ()=default
 Default destructor.
Protected Member Functions inherited from LayerWithParameters< LogicalBinaryDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const LogicalBinaryDescriptor &param, const char *name)
 ~LayerWithParameters ()=default
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
Protected Member Functions inherited from Layer
virtual ~Layer ()=default
template<typename QueueDescriptor>
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
template<typename QueueDescriptor>
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
template<typename QueueDescriptor>
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
template<typename LayerType, typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
virtual ConstantTensors GetConstantTensorsByRef () override final
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
void SetAdditionalInfo (QueueDescriptor &descriptor) const
Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle.

Additional Inherited Members

Public Types inherited from LayerWithParameters< LogicalBinaryDescriptor >
using DescriptorType
Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector<std::reference_wrapper<std::shared_ptr<ConstTensorHandle>>>
using ImmutableConstantTensors = std::vector<std::reference_wrapper<const std::shared_ptr<ConstTensorHandle>>>
Protected Attributes inherited from LayerWithParameters< LogicalBinaryDescriptor >
LogicalBinaryDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.).
Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
std::vector< OutputHandlerm_OutputHandlers
ShapeInferenceMethod m_ShapeInferenceMethod

Detailed Description

This layer represents a Logical Binary operation.

Definition at line 14 of file LogicalBinaryLayer.hpp.

Constructor & Destructor Documentation

◆ LogicalBinaryLayer()

LogicalBinaryLayer ( const LogicalBinaryDescriptor & param,
const char * name )
protected

Constructor to create a LogicalBinaryLayer.

Parameters
[in]paramLogicalBinaryDescriptor to configure the LogicalBinaryLayer
[in]nameOptional name for the layer

Definition at line 18 of file LogicalBinaryLayer.cpp.

19 : LayerWithParameters(2, 1, LayerType::LogicalBinary, param, name)
20{
21}

References LayerWithParameters< LogicalBinaryDescriptor >::LayerWithParameters(), and armnn::LogicalBinary.

Referenced by Clone().

◆ ~LogicalBinaryLayer()

~LogicalBinaryLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

LogicalBinaryLayer * Clone ( Graph & graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned

Implements Layer.

Definition at line 29 of file LogicalBinaryLayer.cpp.

30{
31 return CloneBase<LogicalBinaryLayer>(graph, m_Param, GetName());
32}

References Layer::CloneBase(), Layer::GetName(), LogicalBinaryLayer(), and LayerWithParameters< LogicalBinaryDescriptor >::m_Param.

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory & factory) const
overridevirtual

Makes a workload for the LogicalBinary type.

Parameters
[in]graphThe graph where this layer can be found
[in]factoryThe workload factory which will create the workload
Returns
A pointer to the created workload, or nullptr if not created

Implements Layer.

Definition at line 23 of file LogicalBinaryLayer.cpp.

24{
25 LogicalBinaryQueueDescriptor descriptor;
26 return factory.CreateWorkload(LayerType::LogicalBinary, descriptor, PrepInfoAndDesc(descriptor));
27}

References IWorkloadFactory::CreateWorkload(), armnn::LogicalBinary, and LayerWithParameters< LogicalBinaryDescriptor >::PrepInfoAndDesc().

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy & strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from LayerWithParameters< LogicalBinaryDescriptor >.

Definition at line 95 of file LogicalBinaryLayer.cpp.

96{
97 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
98}

References IStrategy::ExecuteStrategy(), Layer::GetName(), and LayerWithParameters< LogicalBinaryDescriptor >::GetParameters().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > & inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 34 of file LogicalBinaryLayer.cpp.

35{
36 if (inputShapes.size() != 2)
37 {
38 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
39 "\" - should be \"2\".");
40 }
41
42 const TensorShape& input0 = inputShapes[0];
43 const TensorShape& input1 = inputShapes[1];
44
45 if (input0.GetNumDimensions() != input1.GetNumDimensions())
46 {
47 throw armnn::Exception("Input dimensions do not match (\""
48 + std::to_string(input0.GetNumDimensions()) +
49 "\" vs \""
50 + std::to_string(input1.GetNumDimensions()) + "\").");
51 }
52
53 unsigned int numDims = input0.GetNumDimensions();
54
55 std::vector<unsigned int> dims(numDims);
56 for (unsigned int i = 0; i < numDims; i++)
57 {
58 unsigned int dim0 = input0[i];
59 unsigned int dim1 = input1[i];
60
61 if (dim0 != dim1 && dim0 != 1 && dim1 != 1)
62 {
63 throw armnn::Exception("Dimensions should either match or one should be of size 1.");
64 }
65
66 dims[i] = std::max(dim0, dim1);
67 }
68
69 return std::vector<TensorShape>({ TensorShape(numDims, dims.data()) });
70}

References TensorShape::GetNumDimensions().

Referenced by ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of LogicalBinaryLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 72 of file LogicalBinaryLayer.cpp.

73{
74 VerifyLayerConnections(2, CHECK_LOCATION());
75
76 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
77
78 VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
79
80 std::vector<TensorShape> inferredShapes = InferOutputShapes({
81 GetInputSlot(0).GetTensorInfo().GetShape(),
82 GetInputSlot(1).GetTensorInfo().GetShape()
83 });
84
85 if (inferredShapes.size() != 1)
86 {
87 throw armnn::LayerValidationException("inferredShapes has "
88 + std::to_string(inferredShapes.size()) +
89 " elements - should only have 1.");
90 }
91
92 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "LogicalBinaryLayer");
93}
#define CHECK_LOCATION()

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), InferOutputShapes(), Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files: