24.02
|
Go to the documentation of this file.
90 template <LayerType Type>
93 template <LayerType Type>
99 #define DECLARE_LAYER_IMPL(_, LayerName) \
100 class LayerName##Layer; \
102 struct LayerTypeOfImpl<LayerType::_##LayerName> \
104 using Type = LayerName##Layer; \
107 constexpr LayerType LayerEnumOf(const LayerName##Layer*) \
109 return LayerType::_##LayerName; \
112 #define DECLARE_LAYER(LayerName) DECLARE_LAYER_IMPL(, LayerName)
void Transpose(const armnn::TensorShape &dstShape, const armnn::PermutationVector &mappings, const void *src, void *dst, size_t dataTypeSize)
void Splitter(const SplitterQueueDescriptor &data, std::vector< ITensorHandle * > inputs, std::vector< ITensorHandle * > outputs)
void Pooling2d(Decoder< float > &rInputDecoder, Encoder< float > &rOutputEncoder, const TensorInfo &inputInfo, const TensorInfo &outputInfo, const Pooling2dDescriptor ¶ms)
Computes the Pooling2d operation.
#define DECLARE_LAYER(LayerName)
void Reduce(const TensorInfo &inputInfo, const TensorInfo &outputInfo, Decoder< float > &input, Encoder< float > &output, const std::vector< uint32_t > axis, const ReduceOperation reduceOperation)
void LogSoftmax(Decoder< float > &input, Encoder< float > &output, const TensorInfo &inputInfo, const LogSoftmaxDescriptor &descriptor)
void Permute(const armnn::TensorShape &dstShape, const armnn::PermutationVector &mappings, const void *src, void *dst, size_t dataTypeSize)
void Stack(const StackQueueDescriptor &data, std::vector< std::unique_ptr< Decoder< float >>> &inputs, Encoder< float > &output, const TensorInfo &inputInfo, const TensorInfo &outputInfo)
void BatchToSpaceNd(const TensorInfo &inputInfo, const TensorInfo &outputInfo, const BatchToSpaceNdDescriptor ¶ms, Decoder< float > &inputData, Encoder< float > &outputData)
void FullyConnected(const TensorShape &rInputShape, Decoder< float > &rInputDecoder, const TensorShape &rOutputShape, Encoder< float > &rOutputEncoder, const TensorShape &rWeightsShape, Decoder< float > &rWeightDecoder, Decoder< float > *pBiasDecoder, const bool biasEnabled, const unsigned int K, const bool transposeWeights)
Performs a matrix multiplication and optionally adds a bias.
void Pooling3d(Decoder< float > &rInputDecoder, Encoder< float > &rOutputEncoder, const TensorInfo &inputInfo, const TensorInfo &outputInfo, const Pooling3dDescriptor ¶ms)
Computes the Pooling3d operation.
void Fill(Encoder< float > &output, const TensorShape &desiredOutputShape, const float value)
Creates a tensor and fills it with a scalar value.
void ReverseV2(const TensorInfo &inputInfo, const TensorInfo &axisInfo, Decoder< float > &inputDecoder, Decoder< int > &axisDecoder, Encoder< float > &outputEncoder)
void Slice(const TensorInfo &inputInfo, const SliceDescriptor &descriptor, const void *inputData, void *outputData, unsigned int dataTypeSize)
void ArgMinMax(Decoder< float > &in, OUT *out, const TensorInfo &inputTensorInfo, const TensorInfo &outputTensorInfo, ArgMinMaxFunction function, int axis)
float Dequantize(QuantizedType value, float scale, int32_t offset)
Dequantize an 8-bit data type into a floating point data type.
void Softmax(Decoder< float > &in, Encoder< float > &out, const TensorInfo &inputTensorInfo, float beta, int axis)
Computes the softmax function on some inputs, into outputs, with a shape given by tensorInfo.
void SpaceToDepth(const TensorInfo &inputInfo, const TensorInfo &outputInfo, const SpaceToDepthDescriptor ¶ms, Decoder< float > &inputData, Encoder< float > &outputData)
void SpaceToBatchNd(const TensorInfo &inputInfo, const TensorInfo &outputInfo, const SpaceToBatchNdDescriptor ¶ms, Decoder< float > &inputData, Encoder< float > &outputData)
void DetectionPostProcess(const TensorInfo &boxEncodingsInfo, const TensorInfo &scoresInfo, const TensorInfo &anchorsInfo, const TensorInfo &detectionBoxesInfo, const TensorInfo &detectionClassesInfo, const TensorInfo &detectionScoresInfo, const TensorInfo &numDetectionsInfo, const DetectionPostProcessDescriptor &desc, Decoder< float > &boxEncodings, Decoder< float > &scores, Decoder< float > &anchors, float *detectionBoxes, float *detectionClasses, float *detectionScores, float *numDetections)
QuantizedType Quantize(float value, float scale, int32_t offset)
Quantize a floating point data type into an 8-bit data type.
void Tile(const TileDescriptor ¶ms, const TensorInfo &inputInfo, Decoder< float > &inputDecoder, Encoder< float > &outputEncoder)
void Pad(const TensorInfo &inputInfo, const TensorInfo &outputInfo, const ITensorHandle *inputHandle, ITensorHandle *outputHandle, const PadQueueDescriptor &data)
void Debug(const TensorInfo &inputInfo, const T *inputData, LayerGuid guid, const std::string &layerName, unsigned int slotIndex, bool outputsToFile)
void Resize(Decoder< float > &in, const TensorInfo &inputInfo, Encoder< float > &out, const TensorInfo &outputInfo, DataLayoutIndexed dataLayout, ResizeMethod resizeMethod, bool alignCorners, bool halfPixelCenters)
constexpr LayerType LayerEnumOf(const T *=nullptr)
void FakeQuantization(const float *inputData, float *outputData, uint32_t numElements, float min, float max)
Copyright (c) 2021 ARM Limited and Contributors.
typename LayerTypeOfImpl< Type >::Type LayerTypeOf
void DepthToSpace(const TensorInfo &inputInfo, const DepthToSpaceDescriptor &descriptor, const void *inputData, void *outputData, unsigned int dataTypeSize)
void StridedSlice(const TensorInfo &inputInfo, const StridedSliceDescriptor ¶ms, const void *inputData, void *outputData, unsigned int dataTypeSize)
float Activation(float in, ActivationFunction function, float a, float b)
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
void Gather(const TensorInfo ¶msInfo, const TensorInfo &indicesInfo, const TensorInfo &outputInfo, Decoder< float > ¶ms, const int32_t *indices, Encoder< float > &output, const int32_t axis_int)