ArmNN
 24.02
Pooling3d.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2021 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "Pooling3d.hpp"
7 
8 #include <armnn/Exceptions.hpp>
9 #include <armnn/Types.hpp>
10 
13 
14 #include <limits>
15 #include <algorithm>
16 #include <functional>
17 
18 namespace
19 {
21 
22  float DefaultInitializer(PoolingAlgorithm algorithm)
23  {
24  switch (algorithm)
25  {
26  case PoolingAlgorithm::Max:
27  {
28  return std::numeric_limits<float>::lowest();
29  }
30  case PoolingAlgorithm::Average:
31  case PoolingAlgorithm::L2:
32  {
33  return 0.0f;
34  }
35  default:
36  {
37  throw armnn::InvalidArgumentException("Unsupported pooling algorithm");
38  }
39  }
40  }
41 
42  using Accumulator = std::function<void(float & accu, float value)>;
43 
44  Accumulator GetAccumulator(PoolingAlgorithm algorithm)
45  {
46  switch (algorithm)
47  {
48  case PoolingAlgorithm::Max:
49  {
50  return [](float & accu, float value) {
51  if (value > accu) {
52  accu = value;
53  }
54  };
55  }
56 
57  case PoolingAlgorithm::Average:
58  {
59  return [](float & accu, float value) {
60  accu += value;
61  };
62  }
63 
64  case PoolingAlgorithm::L2:
65  {
66  return [](float & accu, float value) {
67  accu += (value*value);
68  };
69  }
70 
71  default:
72  {
73  throw armnn::InvalidArgumentException("Unsupported pooling algorithm");
74  }
75  }
76  }
77 
78  using Executor = std::function<void(float & accumulated, float kernelSize)>;
79 
80  Executor GetExecutor(PoolingAlgorithm algorithm)
81  {
82  switch (algorithm)
83  {
84  case PoolingAlgorithm::Max:
85  {
86  return [](float & /*accumulated*/, float /*kernelSize*/) {};
87  }
88 
89  case PoolingAlgorithm::Average:
90  {
91  return [](float & accumulated, float kernelSize) {
92  accumulated /= kernelSize;
93  };
94  }
95 
96  case PoolingAlgorithm::L2:
97  {
98  return [](float & accumulated, float kernelSize) {
99  accumulated = sqrtf(accumulated / kernelSize);
100  };
101  }
102 
103  default:
104  {
105  throw armnn::InvalidArgumentException("Unsupported pooling algorithm");
106  }
107  }
108  }
109 
110  bool OnPaddingOnly(int start, int end, int maxRange)
111  {
112  if (end <= 0 || start > maxRange)
113  {
114  return true;
115  }
116  else
117  {
118  return false;
119  }
120  }
121 
122 
123  bool ClampRange(int & start, int & end, int maxRange)
124  {
125  if (start < 0 || end > maxRange)
126  {
127  start = std::min(std::max(start, 0), maxRange);
128  end = std::min(std::max(end, 0), maxRange);
129  return true;
130  }
131  else
132  {
133  return false;
134  }
135  }
136 
137  int CalculateIndex(int channels, int depth, int height, int width,
138  int n, int c, int z, int y, int x,
139  armnnUtils::DataLayoutIndexed dataLayout) {
140  switch (dataLayout.GetDataLayout())
141  {
143  {
144  int outputIndex = n * depth * height * width * channels +
145  z * height * width * channels +
146  y * width * channels +
147  x * channels +
148  c;
149  return outputIndex;
150  }
152  {
153  int outputIndex = n * channels * depth * height * width +
154  c * depth * height * width +
155  z * height * width +
156  y * width +
157  x;
158  return outputIndex;
159  }
160  default:
161  {
162  throw armnn::InvalidArgumentException("Unsupported data layout.");
163  }
164  }
165  }
166 }
167 
168 using namespace armnnUtils;
169 
170 namespace armnn
171 {
172 void Pooling3d(Decoder<float>& rInputDecoder,
173  Encoder<float>& rOutputEncoder,
174  const TensorInfo& inputInfo,
175  const TensorInfo& outputInfo,
176  const Pooling3dDescriptor& params)
177 {
178  const DataLayoutIndexed dataLayout(params.m_DataLayout);
179 
180  auto channelsIndex = dataLayout.GetChannelsIndex();
181 
182  auto depthIndex = dataLayout.GetDepthIndex();
183  auto heightIndex = dataLayout.GetHeightIndex();
184  auto widthIndex = dataLayout.GetWidthIndex();
185 
186  const int batchSize = armnn::numeric_cast<int>(outputInfo.GetShape()[0]);
187  const int channels = armnn::numeric_cast<int>(outputInfo.GetShape()[channelsIndex]);
188 
189  const int depthOutput = armnn::numeric_cast<int>(outputInfo.GetShape()[depthIndex]);
190  const int heightOutput = armnn::numeric_cast<int>(outputInfo.GetShape()[heightIndex]);
191  const int widthOutput = armnn::numeric_cast<int>(outputInfo.GetShape()[widthIndex]);
192 
193  const int depthInput = armnn::numeric_cast<int>(inputInfo.GetShape()[depthIndex]);
194  const int heightInput = armnn::numeric_cast<int>(inputInfo.GetShape()[heightIndex]);
195  const int widthInput = armnn::numeric_cast<int>(inputInfo.GetShape()[widthIndex]);
196 
197  const int padLeft = armnn::numeric_cast<int>(params.m_PadLeft);
198  const int padRight = armnn::numeric_cast<int>(params.m_PadRight);
199  const int padTop = armnn::numeric_cast<int>(params.m_PadTop);
200  const int padBottom = armnn::numeric_cast<int>(params.m_PadBottom);
201  const int padFront = armnn::numeric_cast<int>(params.m_PadFront);
202  const int padBack = armnn::numeric_cast<int>(params.m_PadBack);
203 
204  const int strideX = armnn::numeric_cast<int>(params.m_StrideX);
205  const int strideY = armnn::numeric_cast<int>(params.m_StrideY);
206  const int strideZ = armnn::numeric_cast<int>(params.m_StrideZ);
207 
208  const int poolHeight = armnn::numeric_cast<int>(params.m_PoolHeight);
209  const int poolWidth = armnn::numeric_cast<int>(params.m_PoolWidth);
210  const int poolDepth = armnn::numeric_cast<int>(params.m_PoolDepth);
211 
212  float defaultInitializer = DefaultInitializer(params.m_PoolType);
213  Accumulator accumulate = GetAccumulator(params.m_PoolType);
214  Executor execute = GetExecutor(params.m_PoolType);
215 
216  // Check supported padding methods outside the loop to simplify
217  // the inner loop.
218  if (params.m_PaddingMethod != PaddingMethod::Exclude &&
219  params.m_PaddingMethod != PaddingMethod::IgnoreValue)
220  {
221  throw armnn::InvalidArgumentException("Unsupported padding type");
222  }
223 
224  const std::vector<float> decodedInputVec = rInputDecoder.DecodeTensor(inputInfo.GetShape());
225 
226  for (int n = 0; n < batchSize; n++)
227  {
228  for (int c = 0; c < channels; c++)
229  {
230  for (int zOutput = 0; zOutput < depthOutput; zOutput++)
231  {
232  // Calculate values independent of the x and y axis
233  int dstart = (zOutput * strideZ) - padFront;
234  int dend = dstart + poolDepth;
235  // Clamp the pooling region inside the valid input area (which includes the padding).
236  // This is necessary because the final pooling in a row may overlap beyond the padding.
237  dend = std::min(dend, depthInput + padBack);
238 
239  int depth = dend - dstart;
240  bool dclamped = ClampRange(dstart, dend, depthInput);
241  int depthClamped = dend - dstart;
242 
243  for (int yOutput = 0; yOutput < heightOutput; yOutput++)
244  {
245  int hstart = (yOutput * strideY) - padTop;
246  int hend = hstart + poolHeight;
247  // Clamp the pooling region inside the valid input area (which includes the padding).
248  // This is necessary because the final pooling in a row may overlap beyond the padding.
249  hend = std::min(hend, heightInput + padBottom);
250 
251  int height = hend - hstart;
252  bool hclamped = ClampRange(hstart, hend, heightInput);
253  int heightClamped = hend - hstart;
254 
255  for (int xOutput = 0; xOutput < widthOutput; xOutput++)
256  {
257  int wstart = (xOutput * strideX) - padLeft;
258  int wend = wstart + poolWidth;
259  // Clamp the pooling region inside the valid input area (which includes the padding).
260  // This is necessary because the final pooling in a row may overlap beyond the padding.
261  wend = std::min(wend, widthInput + padRight);
262 
263  int width = wend - wstart;
264  bool wclamped = ClampRange(wstart, wend, widthInput);
265  int widthClamped = wend - wstart;
266 
267  float result = defaultInitializer;
268  float poolAreaSize = armnn::numeric_cast<float>(depth * height * width);
269 
270  // Special case: when the pooling kernel is over a padding region and the padding
271  // size is larger or equal to the kernel and the kernel only covers
272  // padding and no real values, then we initialize the result as zero
273  // by convention. This is because we need to choose a value here and
274  // all values we have are padding, which we ignore.
275  if (OnPaddingOnly(dstart, dend, depthInput) ||
276  OnPaddingOnly(hstart, hend, heightInput) ||
277  OnPaddingOnly(wstart, wend, widthInput))
278  {
279  result = 0.0f;
280 
281  int outputIndex = CalculateIndex(channels, depthOutput, heightOutput, widthOutput,
282  n, c, zOutput, yOutput, xOutput, dataLayout);
283 
284  rOutputEncoder[static_cast<unsigned int>(outputIndex)];
285  rOutputEncoder.Set(result);
286 
287  continue;
288  }
289 
290  bool clamped = (dclamped | hclamped | wclamped);
291 
292  if (clamped && params.m_PaddingMethod == PaddingMethod::Exclude)
293  {
294  // When we exclude the padding, it means we calculate with a smaller
295  // kernel size, so I changed the divisor here.
296  poolAreaSize = armnn::numeric_cast<float>(depthClamped * heightClamped * widthClamped);
297  }
298 
299  for (auto zInput = dstart; zInput < dend; zInput++)
300  {
301  for (auto yInput = hstart; yInput < hend; yInput++)
302  {
303  for (auto xInput = wstart; xInput < wend; xInput++)
304  {
305 
306  int inputIndex = CalculateIndex(channels, depthInput, heightInput, widthInput,
307  n, c, zInput, yInput, xInput, dataLayout);
308 
309  accumulate(result, decodedInputVec[static_cast<unsigned int>(inputIndex)]);
310  }
311  }
312  }
313 
314  execute(result, poolAreaSize);
315 
316  int outputIndex = CalculateIndex(channels, depthOutput, heightOutput, widthOutput,
317  n, c, zOutput, yOutput, xOutput, dataLayout);
318 
319  rOutputEncoder[static_cast<unsigned int>(outputIndex)];
320  rOutputEncoder.Set(result);
321  }
322  }
323  }
324  }
325  }
326 }
327 
328 } //namespace armnn
armnn::Decoder< float >
armnn::Encoder::Set
virtual void Set(IType right)=0
armnn::DataLayout::NCDHW
@ NCDHW
armnn::Pooling3dDescriptor::m_PadTop
uint32_t m_PadTop
Padding top value in the height dimension.
Definition: Descriptors.hpp:479
armnn::Pooling3dDescriptor
A Pooling3dDescriptor for the Pooling3dLayer.
Definition: Descriptors.hpp:431
armnn::TensorInfo
Definition: Tensor.hpp:152
armnnUtils::DataLayoutIndexed
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
Definition: DataLayoutIndexed.hpp:17
armnnUtils::DataLayoutIndexed::GetDataLayout
armnn::DataLayout GetDataLayout() const
Definition: DataLayoutIndexed.hpp:22
armnn::Pooling3dDescriptor::m_StrideZ
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
Definition: Descriptors.hpp:497
armnn::Pooling3dDescriptor::m_DataLayout
DataLayout m_DataLayout
The data layout to be used (NCDHW, NDHWC).
Definition: Descriptors.hpp:503
armnn::Pooling3dDescriptor::m_PadBottom
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Definition: Descriptors.hpp:481
NumericCast.hpp
armnn::Pooling3dDescriptor::m_StrideY
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
Definition: Descriptors.hpp:495
armnn::Pooling3d
void Pooling3d(Decoder< float > &rInputDecoder, Encoder< float > &rOutputEncoder, const TensorInfo &inputInfo, const TensorInfo &outputInfo, const Pooling3dDescriptor &params)
Computes the Pooling3d operation.
Definition: Pooling3d.cpp:172
armnnUtils::DataLayoutIndexed::GetHeightIndex
unsigned int GetHeightIndex() const
Definition: DataLayoutIndexed.hpp:24
armnn::DataLayout::NDHWC
@ NDHWC
armnn::Pooling3dDescriptor::m_PoolType
PoolingAlgorithm m_PoolType
The pooling algorithm to use (Max. Average, L2).
Definition: Descriptors.hpp:473
armnn::Encoder< float >
armnn::Pooling3dDescriptor::m_PoolWidth
uint32_t m_PoolWidth
Pooling width value.
Definition: Descriptors.hpp:487
armnn::Pooling3dDescriptor::m_PaddingMethod
PaddingMethod m_PaddingMethod
The padding method to be used. (Exclude, IgnoreValue).
Definition: Descriptors.hpp:501
Pooling3d.hpp
armnnUtils
Definition: CompatibleTypes.hpp:10
armnn::InvalidArgumentException
Definition: Exceptions.hpp:80
armnn::Decoder::DecodeTensor
virtual std::vector< float > DecodeTensor(const TensorShape &tensorShape, bool isDepthwise=false)=0
armnnUtils::DataLayoutIndexed::GetWidthIndex
unsigned int GetWidthIndex() const
Definition: DataLayoutIndexed.hpp:25
armnn::Pooling3dDescriptor::m_PadFront
uint32_t m_PadFront
Padding front value in the depth dimension.
Definition: Descriptors.hpp:483
armnn::Pooling3dDescriptor::m_PadRight
uint32_t m_PadRight
Padding right value in the width dimension.
Definition: Descriptors.hpp:477
armnn::Pooling3dDescriptor::m_PoolHeight
uint32_t m_PoolHeight
Pooling height value.
Definition: Descriptors.hpp:489
armnn::Pooling3dDescriptor::m_PadBack
uint32_t m_PadBack
Padding back value in the depth dimension.
Definition: Descriptors.hpp:485
armnn::Pooling3dDescriptor::m_StrideX
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Definition: Descriptors.hpp:493
armnn::Pooling3dDescriptor::m_PadLeft
uint32_t m_PadLeft
Padding left value in the width dimension.
Definition: Descriptors.hpp:475
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
Exceptions.hpp
armnn
Copyright (c) 2021 ARM Limited and Contributors.
Definition: 01_00_quick_start.dox:6
Types.hpp
armnnUtils::DataLayoutIndexed::GetChannelsIndex
unsigned int GetChannelsIndex() const
Definition: DataLayoutIndexed.hpp:23
armnn::PoolingAlgorithm
PoolingAlgorithm
Definition: Types.hpp:150
armnn::Pooling3dDescriptor::m_PoolDepth
uint32_t m_PoolDepth
Pooling depth value.
Definition: Descriptors.hpp:491
DataLayoutIndexed.hpp
armnnUtils::DataLayoutIndexed::GetDepthIndex
unsigned int GetDepthIndex() const
Definition: DataLayoutIndexed.hpp:26