24.08
|
Go to the documentation of this file.
57 auto layer = CloneBase<BatchNormalizationLayer>(graph,
m_Param,
GetName());
64 return std::move(layer);
77 if (inferredShapes.size() != 1)
80 + std::to_string(inferredShapes.size()) +
81 " elements - should only have 1.");
101 std::vector<armnn::ConstTensor> constTensors { { managedMean.
GetTensorInfo(), managedMean.
Map() },
A BatchNormalizationDescriptor for the BatchNormalizationLayer.
const ConstTensorHandle * m_Gamma
const TensorInfo & GetTensorInfo() const override
std::shared_ptr< ConstTensorHandle > m_Mean
A unique pointer to store Mean values.
const ConstTensorHandle * m_Variance
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
const ConstTensorHandle * m_Mean
This layer represents a batch normalization operation.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const BatchNormalizationDescriptor & GetParameters() const override
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
const char * GetName() const override
Returns the name of the layer.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >> ImmutableConstantTensors
std::shared_ptr< ConstTensorHandle > m_Gamma
A unique pointer to store Gamma values.
BatchNormalizationDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
std::shared_ptr< ConstTensorHandle > m_Variance
A unique pointer to store Variance values.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values stored by the layer.
const ConstTensorHandle * m_Beta
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the BatchNormalization type.
const void * Map(bool blocking=true)
RAII Managed resource Unmaps MemoryArea once out of scope.
void SetAdditionalInfo(QueueDescriptor &descriptor) const
BatchNormalizationLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
std::shared_ptr< ConstTensorHandle > m_Beta
A unique pointer to store Beta values.
BatchNormalizationLayer(const BatchNormalizationDescriptor ¶m, const char *name)
Constructor to create a BatchNormalizationLayer.
const TensorShape & GetShape() const
Copyright (c) 2021 ARM Limited and Contributors.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
Infer the shape of the output(s) based on the provided input shape(s)
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of BatchNormalizationLayer.
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
const TensorInfo & GetTensorInfo() const