ArmNN
 25.11
Loading...
Searching...
No Matches
ClConvolution2dWorkload.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7
8#include "ClWorkloadUtils.hpp"
9
10#include <cl/ClLayerSupport.hpp>
11#include <cl/ClTensorHandle.hpp>
12#include <cl/ClLayerSupport.hpp>
16
17#include <arm_compute/runtime/CL/functions/CLConvolutionLayer.h>
18
19namespace armnn
20{
21using namespace armcomputetensorutils;
22
23arm_compute::Status ClConvolution2dWorkloadValidate(const TensorInfo& input,
24 const TensorInfo& output,
25 const Convolution2dDescriptor& descriptor,
26 const TensorInfo& weights,
27 const Optional<TensorInfo>& biases,
28 bool isFastMathEnabled,
29 const ActivationDescriptor* activationDescriptor)
30{
31 const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
32 const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
33 arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.m_DataLayout);
34 aclWeightsInfo.set_are_values_constant(weights.IsConstant());
35
36 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.m_DilationX,
37 descriptor.m_DilationY);
38
39 arm_compute::TensorInfo aclBiasesInfo;
40 arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr;
41
42 if (descriptor.m_BiasEnabled)
43 {
44 if (!biases.has_value())
45 {
46 return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
47 "ArmNN ClConvolution2dWorkload has empty bias value."};
48 }
49 // There's currently a problem with non const bias, so we'll explicitly block it here.
50 if (!biases.value().IsConstant())
51 {
52 return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
53 "ArmNN ClDepthwiseConv2dWorkload does not support non constant bias."};
54 }
55 aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
56 aclBiasesInfo.set_are_values_constant(biases.value().IsConstant());
57 optionalAclBiasesInfo = &aclBiasesInfo;
58 }
59
60 arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor);
61
62 const arm_compute::ActivationLayerInfo activationInfo = ConvertActivationDescriptorToAclActivationLayerInfo(
63 activationDescriptor);
64
65 return arm_compute::CLConvolutionLayer::validate(&aclInputInfo,
66 &aclWeightsInfo,
67 optionalAclBiasesInfo,
68 &aclOutputInfo,
69 layerInfo,
70 arm_compute::WeightsInfo(),
71 aclDilationInfo,
72 activationInfo,
73 isFastMathEnabled);
74}
75
77 const WorkloadInfo& info,
78 std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager,
79 const arm_compute::CLCompileContext& clCompileContext,
80 const bool isFastMathEnabled)
82 , m_ConvolutionLayer(memoryManager)
83{
84 ARMNN_SCOPED_PROFILING_EVENT_CL_NAME_GUID("ClConvolution2dWorkload");
85
86 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(m_Data.m_Parameters.m_DilationX,
87 m_Data.m_Parameters.m_DilationY);
88
89 uint32_t numInputs = m_Data.m_Parameters.m_BiasEnabled ? 3: 2;
90 m_Data.ValidateInputsOutputs("ClConvolution2dWorkload", numInputs, 1);
91
92 arm_compute::ICLTensor& input = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
93 arm_compute::ICLTensor& output = static_cast<IClTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
94 arm_compute::ICLTensor& weights = static_cast<IClTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
95 weights.info()->set_are_values_constant(info.m_InputTensorInfos[1].IsConstant());
96
97 if (m_Data.m_Parameters.m_BiasEnabled)
98 {
99 arm_compute::ICLTensor& bias = static_cast<IClTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
100 bias.info()->set_are_values_constant(info.m_InputTensorInfos[2].IsConstant());
101 // We assume here that NeonConvolution2dWorkloadValidate has been called before the constructor.
102 ARMNN_THROW_INVALIDARG_MSG_IF_FALSE(info.m_InputTensorInfos[2].IsConstant() == true,
103 "The bias tensor must be constant.");
104 m_BiasProxy = std::make_unique<ICLTensorProxy>(&bias);
105 }
106
107 // Create Proxy tensor and set the initial tensor handle to it
108 m_InputProxy = std::make_unique<ICLTensorProxy>(&input);
109 m_OutputProxy = std::make_unique<ICLTensorProxy>(&output);
110 m_WeightsProxy = std::make_unique<ICLTensorProxy>(&weights);
111
112 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
113 input.info()->set_data_layout(aclDataLayout);
114 output.info()->set_data_layout(aclDataLayout);
115 weights.info()->set_data_layout(aclDataLayout);
116
117 arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
118
119 const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor);
120
121 {
122 ARMNN_SCOPED_PROFILING_EVENT_CL_NAME_GUID("ClConvolution2dWorkload_configure");
123 m_ConvolutionLayer.configure(clCompileContext,
124 m_InputProxy.get(),
125 m_WeightsProxy.get(),
126 m_BiasProxy.get(),
127 m_OutputProxy.get(),
128 padStrideInfo,
129 arm_compute::WeightsInfo(),
130 aclDilationInfo,
131 activationInfo,
132 isFastMathEnabled);
133 }
134
135 m_ConvolutionMethod =
136 m_ConvolutionLayer.get_convolution_method(input.info(),
137 weights.info(),
138 output.info(),
139 padStrideInfo,
140 arm_compute::WeightsInfo(),
141 activationInfo,
142 arm_compute::CLScheduler::get().target(),
143 aclDilationInfo,
144 isFastMathEnabled);
145
146 // Add details for profiling output
147 WorkloadInfo detailsInfo;
148
149 detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos;
150 detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos;
152
153 // Report Profiling Details
154 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("ClConvolution2dWorkload_Construct",
155 descriptor.m_Parameters,
156 detailsInfo,
157 GetGuid());
158}
159
161{
162 ARMNN_SCOPED_PROFILING_EVENT_CL_NAME_GUID("ClConvolution2dWorkload_Execute");
163 RunClFunction(m_ConvolutionLayer, CHECK_LOCATION());
164}
165
166arm_compute::ConvolutionMethod ClConvolution2dWorkload::GetConvolutionMethod() const
167{
168 return m_ConvolutionMethod;
169}
170
172{
173 arm_compute::ICLTensor& input = static_cast<IClTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
174 arm_compute::ICLTensor& output = static_cast<IClTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
175
176 m_InputProxy->set(&input);
177 m_OutputProxy->set(&output);
178}
179
180} //namespace armnn
#define ARMNN_SCOPED_PROFILING_EVENT_CL_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.
#define ARMNN_THROW_INVALIDARG_MSG_IF_FALSE(_cond, _str)
#define CHECK_LOCATION()
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
arm::pipe::ProfilingGuid GetGuid() const final
Definition Workload.hpp:52
ClBaseWorkload(const Convolution2dQueueDescriptor &descriptor, const WorkloadInfo &info)
ClConvolution2dWorkload(const Convolution2dQueueDescriptor &descriptor, const WorkloadInfo &info, std::shared_ptr< arm_compute::MemoryManagerOnDemand > &memoryManager, const arm_compute::CLCompileContext &clCompileContext, const bool isFastMathEnabled=false)
arm_compute::ConvolutionMethod GetConvolutionMethod() const
bool has_value() const noexcept
Definition Optional.hpp:53
bool IsConstant() const
Definition Tensor.cpp:513
Copyright (c) 2021 ARM Limited and Contributors.
void RunClFunction(arm_compute::IFunction &function, const CheckLocation &location)
arm_compute::Status ClConvolution2dWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const Convolution2dDescriptor &descriptor, const TensorInfo &weights, const Optional< TensorInfo > &biases, bool isFastMathEnabled, const ActivationDescriptor *activationDescriptor)
arm_compute::ActivationLayerInfo ConvertAdditionalInfoToAclActivationLayerInfo(const QueueDescriptor &queueDescriptor)
std::string GetConvolutionMethodString(arm_compute::ConvolutionMethod &convolutionMethod)
arm_compute::ActivationLayerInfo ConvertActivationDescriptorToAclActivationLayerInfo(const ActivationDescriptor &actDesc)
An ActivationDescriptor for the ActivationLayer.
A Convolution2dDescriptor for the Convolution2dLayer.
uint32_t m_DilationY
Dilation along y axis.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation along x axis.
bool m_BiasEnabled
Enable/disable bias.
Contains information about TensorInfos of a layer.
std::vector< TensorInfo > m_OutputTensorInfos
Optional< std::string > m_ConvolutionMethod
std::vector< TensorInfo > m_InputTensorInfos