ArmNN
 25.11
Loading...
Searching...
No Matches
Convolution2dQueueDescriptor Struct Reference

#include <WorkloadData.hpp>

Inheritance diagram for Convolution2dQueueDescriptor:
[legend]
Collaboration diagram for Convolution2dQueueDescriptor:
[legend]

Public Member Functions

void Validate (const WorkloadInfo &workloadInfo) const
Public Member Functions inherited from QueueDescriptorWithParameters< Convolution2dDescriptor >
virtual ~QueueDescriptorWithParameters ()=default
Public Member Functions inherited from QueueDescriptor
virtual ~QueueDescriptor ()=default
void ValidateTensorNumDimensions (const TensorInfo &tensor, std::string const &descName, unsigned int numDimensions, std::string const &tensorName) const
void ValidateTensorNumDimNumElem (const TensorInfo &tensorInfo, unsigned int numDimension, unsigned int numElements, std::string const &tensorName) const
void ValidateInputsOutputs (const std::string &descName, unsigned int numExpectedIn, unsigned int numExpectedOut) const
template<typename T>
const T * GetAdditionalInformation () const

Additional Inherited Members

Public Attributes inherited from QueueDescriptorWithParameters< Convolution2dDescriptor >
Convolution2dDescriptor m_Parameters
Public Attributes inherited from QueueDescriptor
std::vector< ITensorHandle * > m_Inputs
std::vector< ITensorHandle * > m_Outputs
void * m_AdditionalInfoObject
bool m_AllowExpandedDims = false
Protected Member Functions inherited from QueueDescriptorWithParameters< Convolution2dDescriptor >
 QueueDescriptorWithParameters ()=default
QueueDescriptorWithParametersoperator= (QueueDescriptorWithParameters const &)=default
Protected Member Functions inherited from QueueDescriptor
 QueueDescriptor ()
 QueueDescriptor (QueueDescriptor const &)=default
QueueDescriptoroperator= (QueueDescriptor const &)=default

Detailed Description

Definition at line 210 of file WorkloadData.hpp.

Member Function Documentation

◆ Validate()

void Validate ( const WorkloadInfo & workloadInfo) const

Definition at line 1253 of file WorkloadData.cpp.

1254{
1255 const std::string descriptorName{"Convolution2dQueueDescriptor"};
1256
1257 uint32_t numInputs = 2;
1259 {
1260 numInputs = 3;
1261 }
1262
1263 ValidateNumInputs(workloadInfo, descriptorName, numInputs);
1264 ValidateNumOutputs(workloadInfo, descriptorName, 1);
1265
1266 const TensorInfo& inputTensorInfo = workloadInfo.m_InputTensorInfos[0];
1267 const TensorInfo& outputTensorInfo = workloadInfo.m_OutputTensorInfos[0];
1268
1269 ValidateTensorNumDimensions(inputTensorInfo, descriptorName, 4, "input");
1270 ValidateTensorNumDimensions(outputTensorInfo, descriptorName, 4, "output");
1271
1272 const TensorInfo& weightTensorInfo = workloadInfo.m_InputTensorInfos[1];
1273
1274 ValidateTensorNumDimensions(weightTensorInfo, descriptorName, 4, "weight");
1275
1276 ValidateWeightDataType(inputTensorInfo, weightTensorInfo, descriptorName);
1277
1278 Optional<TensorInfo> optionalBiasTensorInfo;
1280 {
1281 optionalBiasTensorInfo = MakeOptional<TensorInfo>(workloadInfo.m_InputTensorInfos[2]);
1282 const TensorInfo& biasTensorInfo = optionalBiasTensorInfo.value();
1283
1284 ValidateTensorDataType(biasTensorInfo, GetBiasDataType(inputTensorInfo.GetDataType()), descriptorName, "bias");
1285 ValidateBiasTensorQuantization(biasTensorInfo, weightTensorInfo, descriptorName);
1286 }
1287
1288 if (m_Parameters.m_StrideX <= 0 || m_Parameters.m_StrideY <= 0 )
1289 {
1290 throw InvalidArgumentException(
1291 fmt::format("{}: strideX (provided {}) and strideY (provided {}) "
1292 "cannot be either negative or 0.",
1293 descriptorName, m_Parameters.m_StrideX, m_Parameters.m_StrideY));
1294 }
1295
1296 ValidatePerAxisQuantization(inputTensorInfo,
1297 outputTensorInfo,
1298 weightTensorInfo,
1299 optionalBiasTensorInfo,
1300 descriptorName);
1301
1302 std::vector<DataType> supportedTypes =
1303 {
1311 };
1312
1313 ValidateDataTypes(inputTensorInfo, supportedTypes, descriptorName);
1314
1315 // For Convolution2d, we allow to have BFloat16 input with Float32 output for optimization.
1316 if (inputTensorInfo.GetDataType() == DataType::BFloat16)
1317 {
1318 if (outputTensorInfo.GetDataType() != DataType::BFloat16 && outputTensorInfo.GetDataType() != DataType::Float32)
1319 {
1320 throw InvalidArgumentException(descriptorName + ": " + " Output tensor type must be BFloat16 or Float32 "
1321 "for BFloat16 input.");
1322 }
1323 }
1324 else
1325 {
1326 ValidateTensorDataTypesMatch(inputTensorInfo, outputTensorInfo, descriptorName, "input", "output");
1327 }
1328}
DataType GetDataType() const
Definition Tensor.hpp:200
Optional< T > MakeOptional(Args &&... args)
Utility template that constructs an object of type T in-place and wraps it inside an Optional<T> obje...
Definition Optional.hpp:305
DataType GetBiasDataType(DataType inputDataType)
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
void ValidateTensorNumDimensions(const TensorInfo &tensor, std::string const &descName, unsigned int numDimensions, std::string const &tensorName) const
std::vector< TensorInfo > m_OutputTensorInfos
std::vector< TensorInfo > m_InputTensorInfos

References armnn::BFloat16, armnn::Float16, armnn::Float32, armnn::GetBiasDataType(), TensorInfo::GetDataType(), WorkloadInfo::m_InputTensorInfos, WorkloadInfo::m_OutputTensorInfos, QueueDescriptorWithParameters< Convolution2dDescriptor >::m_Parameters, armnn::MakeOptional(), armnn::QAsymmS8, armnn::QAsymmU8, armnn::QSymmS16, armnn::QSymmS8, QueueDescriptor::ValidateTensorNumDimensions(), and OptionalReferenceSwitch< IsReference, T >::value().


The documentation for this struct was generated from the following files: