27 std::vector<std::string> inputNames;
28 std::string outputName = std::string(
"output0_");
31 DType inputDType0 =
ArmNNToDType(inputs[0]->GetDataType());
32 DType outputDType0 =
ArmNNToDType(outputs[0]->GetDataType());
37 inputNames.emplace_back(
"input_0");
38 inputNames.emplace_back(
"input_1");
41 inputNames.emplace_back(
"input_2");
50 for (uint32_t i = 0; i < inputs.size(); ++i)
53 inputNames.push_back(inputName);
60 std::vector<TosaSerializationTensor*> tensors;
61 std::vector<TosaSerializationOperator*> operators;
67 if(inputNames[0].find(
"input_") != std::string::npos)
70 tensors.push_back(
new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
75 if(!inputs[1]->IsConstant() || layer ==
nullptr)
78 DType inputDType1 =
ArmNNToDType(inputs[1]->GetDataType());
80 tensors.push_back(
new TosaSerializationTensor(inputNames[1], inputShape1, inputDType1, {}));
85 if(!inputs[2]->IsConstant() || layer ==
nullptr)
88 DType inputDType2 =
ArmNNToDType(inputs[2]->GetDataType());
90 tensors.push_back(
new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
98 operators.push_back(
new TosaSerializationOperator(Op_CONST, Attribute_NONE,
nullptr, {}, {constantName}));
101 unsigned int index = 4;
103 const DType dType = (inputDType0 == DType_INT8) ? DType_INT32 : outputDType0;
104 std::vector<float> data(outputs[0]->GetShape()[index], 0);
106 std::vector<uint8_t> uint8Data;
107 TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
109 tensors.push_back(
new TosaSerializationTensor(constantName,
110 {
static_cast<int32_t
>(outputs[0]->GetShape()[index])},
113 inputNames.emplace_back(constantName);
118 std::string outputConv3dName;
119 bool isInputInt8 = (inputDType0 == DType_INT8);
123 tensors.push_back(
new TosaSerializationTensor(outputConv3dName, outputShape0, DType_INT32, {}));
127 tensors.push_back(
new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
132 std::vector<int32_t> transposeOutputShape = {transposeInputShape[4],
133 transposeInputShape[0],
134 transposeInputShape[1],
135 transposeInputShape[2],
136 transposeInputShape[3]};
139 tensors.push_back(
new TosaSerializationTensor(transposeOutputName, transposeOutputShape, inputDType0, {}));
142 std::string transposeInputName = inputNames[1];
143 std::string conv3dInput = inputNames[0];
144 std::string conv3dWeight = transposeOutputName;
145 std::string conv3dBias = inputNames[2];
149 std::vector<int> perm = {4, 0, 1, 2, 3};
150 TosaTransposeAttribute transposeAttribute(perm);
151 auto transpose_op =
new TosaSerializationOperator(Op_TRANSPOSE,
152 Attribute_TransposeAttribute,
154 {transposeInputName},
155 {transposeOutputName});
156 operators.push_back(transpose_op);
159 std::vector<int> pad = {
static_cast<int>(conv3dDescriptor->
m_PadFront),
160 static_cast<int>(conv3dDescriptor->
m_PadBack),
161 static_cast<int>(conv3dDescriptor->
m_PadTop),
163 static_cast<int>(conv3dDescriptor->
m_PadLeft),
164 static_cast<int>(conv3dDescriptor->
m_PadRight)};
165 std::vector<int> stride = {
static_cast<int>(conv3dDescriptor->
m_StrideZ),
166 static_cast<int>(conv3dDescriptor->
m_StrideY),
167 static_cast<int>(conv3dDescriptor->
m_StrideX)};
168 std::vector<int> dilation = {
static_cast<int>(conv3dDescriptor->
m_DilationZ),
172 TosaConvAttribute attribute(pad, stride, dilation,
173 inputs[0]->GetQuantizationOffset(),
174 inputs[1]->GetQuantizationOffset(),
177 std::string& convOutStr = isInputInt8 ? outputConv3dName : outputName;
178 auto* conv3d_op =
new TosaSerializationOperator(Op_CONV3D,
179 Attribute_ConvAttribute,
181 {conv3dInput, conv3dWeight, conv3dBias},
183 operators.push_back(conv3d_op);
187 int32_t output_zp = outputs[0]->GetQuantizationOffset();
188 double output_scale = outputs[0]->GetQuantizationScales()[0];
189 double input_scale = inputs[0]->GetQuantizationScales()[0];
190 const std::vector<float>& weight_scales = inputs[1]->GetQuantizationScales();
192 TosaSerializationOperator* rescaleOp =
nullptr;
205 operators.push_back(rescaleOp);
206 tensors.push_back(
new TosaSerializationTensor(outputName,
211 return new TosaSerializationBasicBlock(blockName,
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
void CreateRescaleTosaOperatorForWeights(const std::string &inputName, const std::string &outputName, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, double input_scale, double output_scale, const std::vector< float > &weight_scales, TosaSerializationOperator **op)
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_PadBack
Padding back value in the depth dimension.
uint32_t m_DilationZ
Dilation along z axis.
uint32_t m_DilationY
Dilation along y axis.
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NDHWC, NCDHW).
uint32_t m_PadFront
Padding front value in the depth dimension.
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.