15{
16 std::vector<std::string> inputNames;
17 std::string outputName = std::string("output0_");
19
20 DType inputDType0 =
ArmNNToDType(inputs[0]->GetDataType());
21 DType outputDType0 =
ArmNNToDType(outputs[0]->GetDataType());
22
23
24 if(layer == nullptr)
25 {
26 inputNames.emplace_back("input_0");
27 inputNames.emplace_back("input_1");
29 {
30 inputNames.emplace_back("input_2");
31 }
32 }
33
34
35
36 else
37 {
38
39 for (uint32_t i = 0; i < inputs.size(); ++i)
40 {
42 inputNames.push_back(inputName);
43 }
44
45
47 }
48
49 std::vector<TosaSerializationTensor*> tensors;
50 std::vector<TosaSerializationOperator*> operators;
51
52
53
54
55
57 if(inputNames[0].find("input_") != std::string::npos)
58 {
59 tensors.push_back(new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
60 }
61
62
63
65 if(!inputs[1]->IsConstant() || layer == nullptr)
66 {
67 int32_t multiplier = inputShape1[3]/inputShape0[3];
68
69
70 std::vector<int32_t> inputShapeHWCM = {
71 inputShape1[1], inputShape1[2], inputShape0[3], multiplier
72 };
73
74 DType inputDType1 =
ArmNNToDType(inputs[1]->GetDataType());
75
76 tensors.push_back(new TosaSerializationTensor(inputNames[1], inputShapeHWCM, inputDType1, {}));
77 }
78
80 {
81 if(!inputs[2]->IsConstant() || layer == nullptr)
82 {
84 DType inputDType2 =
ArmNNToDType(inputs[2]->GetDataType());
85
86 tensors.push_back(new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
87 }
88 }
89 else
90 {
91
93
94 operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {constantName}));
95
96
97 unsigned int index = (conv2dDescriptor->
m_DataLayout == DataLayout::NHWC) ? 3 : 1;
98
99 const DType dType = (inputDType0 == DType_INT8) ? DType_INT32 : outputDType0;
100 std::vector<float> data(outputs[0]->GetShape()[index], 0);
101
102 std::vector<uint8_t> uint8Data;
103 TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
104
105 tensors.push_back(new TosaSerializationTensor(constantName,
106 {static_cast<int32_t>(outputs[0]->GetShape()[index])},
107 dType,
108 uint8Data));
109 inputNames.emplace_back(constantName);
110 }
111
112
114 std::string outputConv2dName;
115 bool isInputInt8 = (inputDType0 == DType_INT8);
116 if (isInputInt8)
117 {
119 tensors.push_back(new TosaSerializationTensor(outputConv2dName, outputShape0, DType_INT32, {}));
120 }
121 else
122 {
123 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
124 }
125
126
127 std::vector<int> pad = {
static_cast<int>(conv2dDescriptor->
m_PadTop),
129 static_cast<int>(conv2dDescriptor->
m_PadLeft),
130 static_cast<int>(conv2dDescriptor->
m_PadRight)};
131 std::vector<int> stride = {
static_cast<int>(conv2dDescriptor->
m_StrideY),
132 static_cast<int>(conv2dDescriptor->
m_StrideX)};
133 std::vector<int> dilation = {
static_cast<int>(conv2dDescriptor->
m_DilationY),
135 TosaConvAttribute attribute(pad, stride, dilation,
136 inputs[0]->GetQuantizationOffset(),
137 inputs[1]->GetQuantizationOffset(),
138 false);
139
141 inputNames[0],
143 inputDType0,
144 inputShape1,
145 pad,
146 stride,
147 dilation,
148 tensors,
149 operators);
150
151 std::string& convOutStr = isInputInt8 ? outputConv2dName : outputName;
152 auto* conv2d_op = new TosaSerializationOperator(Op_DEPTHWISE_CONV2D,
153 Attribute_ConvAttribute,
154 &attribute,
155 {sliceOutputName, inputNames[1], inputNames[2]},
156 {convOutStr});
157 operators.push_back(conv2d_op);
158
159 if (isInputInt8)
160 {
161 int32_t output_zp = outputs[0]->GetQuantizationOffset();
162 double output_scale = outputs[0]->GetQuantizationScales()[0];
163 double input_scale = inputs[0]->GetQuantizationScales()[0];
164 const std::vector<float>& weight_scales = inputs[1]->GetQuantizationScales();
165
166 TosaSerializationOperator* rescaleOp = nullptr;
168 outputName,
169 0,
170 output_zp,
171 false,
172 false,
173 true,
174 true,
175 input_scale,
176 output_scale,
177 weight_scales,
178 &rescaleOp);
179 operators.push_back(rescaleOp);
180 tensors.push_back(new TosaSerializationTensor(outputName,
181 outputShape0,
182 DType_INT8, {}));
183 }
184
185
186
187 return new TosaSerializationBasicBlock(blockName,
189 operators,
190 tensors,
191 inputNames,
192 {outputName});
193}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetInputSlicedToItsUsedSize(const std::vector< int32_t > &inputShape, const std::string &inputName, const DataLayout layout, const DType datatype, const std::vector< int32_t > &kernel, const std::vector< int32_t > &pad, const std::vector< int32_t > &stride, const std::vector< int32_t > &dilations, std::vector< TosaSerializationTensor * > &tensors, std::vector< TosaSerializationOperator * > &operators, const bool isPoolingOp=false)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
void CreateRescaleTosaOperatorForWeights(const std::string &inputName, const std::string &outputName, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, double input_scale, double output_scale, const std::vector< float > &weight_scales, TosaSerializationOperator **op)
Creates a TOSA rescale operator for weight tensors.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation factor value for height dimension.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation factor value for width dimension.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.