32 return std::move(layer);
37 if (inputShapes.size() != 2)
39 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
40 "\" - should be \"2\".");
47 unsigned int batches = inputShape[0];
48 unsigned int dimIdx =
m_Param.m_TransposeWeightMatrix ? 0 : 1;
50 return std::vector<TensorShape>({
TensorShape({batches, weightShape[dimIdx]})});
63 if (inferredShapes.size() != 1)
66 + std::to_string(inferredShapes.size()) +
67 " elements - should only have 1.");
Base class for all ArmNN exceptions so that users can filter to just those.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values stored by the layer.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
FullyConnectedLayer(const FullyConnectedDescriptor ¶m, const char *name)
Constructor to create a FullyConnectedLayer.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of FullyConnectedLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the FullyConnected type.
FullyConnectedLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > > > ImmutableConstantTensors
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
ShapeInferenceMethod m_ShapeInferenceMethod
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const FullyConnectedDescriptor ¶m, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const FullyConnectedDescriptor & GetParameters() const override
FullyConnectedDescriptor m_Param
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
const TensorInfo & GetTensorInfo() const override
const TensorShape & GetShape() const
Copyright (c) 2021 ARM Limited and Contributors.
uint32_t GetNumInputs(bool biasEnabled)
void FullyConnected(const TensorShape &rInputShape, Decoder< float > &rInputDecoder, const TensorShape &rOutputShape, Encoder< float > &rOutputEncoder, const TensorShape &rWeightsShape, Decoder< float > &rWeightDecoder, Decoder< float > *pBiasDecoder, const bool biasEnabled, const unsigned int K, const bool transposeWeights)
Performs a matrix multiplication and optionally adds a bias.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
A FullyConnectedDescriptor for the FullyConnectedLayer.