20{
21 std::string inputName;
22 std::vector<std::string> inputNames;
23 std::vector<std::string> fcInputNames;
24 std::string outputName = std::string("output0_");
26
27 DType inputDType0 =
ArmNNToDType(inputs[0]->GetDataType());
28 DType outputDType0 =
ArmNNToDType(outputs[0]->GetDataType());
29
30
31 if(layer == nullptr)
32 {
33 inputNames.emplace_back("input_0");
34 inputNames.emplace_back("constant_1");
36 {
37 inputNames.emplace_back("constant_2");
38 }
39 }
40
41
42
43 else
44 {
46 inputNames.push_back(inputName);
47
49 inputNames.push_back(inputName);
50
52 {
54 inputNames.push_back(inputName);
55 }
56
57
59 }
60
61 std::vector<TosaSerializationTensor*> tensors;
62 std::vector<TosaSerializationOperator*> operators;
63
64
65
66
67
68 if(inputNames[0].find("input_") != std::string::npos)
69 {
71 tensors.push_back(new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
72 }
73
74
75
77 {
79 DType inputDType1 =
ArmNNToDType(inputs[1]->GetDataType());
80 tensors.push_back(new TosaSerializationTensor(inputNames[1], inputShape1, inputDType1, {}));
81 }
82
84 {
85 if(!inputs[2]->IsConstant() || layer == nullptr)
86 {
88 DType inputDType2 =
ArmNNToDType(inputs[2]->GetDataType());
89 tensors.push_back(new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
90 }
91 }
92 else
93 {
94
96 inputNames.push_back(inputName);
97
98 operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {inputName}));
99
100 const DType dType = (inputDType0 == DType_INT8) ? DType_INT32 : outputDType0;
101 std::vector<float> data(outputs[0]->GetShape()[1], 0);
102
103 std::vector<uint8_t> uint8Data;
104 TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
105
106 tensors.push_back(new TosaSerializationTensor(inputName,
107 {static_cast<int32_t>(outputs[0]->GetShape()[1])},
108 dType,
109 uint8Data));
110 }
111
112 fcInputNames = inputNames;
113
114
115 if (inputs[0]->GetShape().GetNumDimensions() != 2)
116 {
117 uint32_t num_elems = inputs[1]->GetShape()[1];
118 uint32_t num_batch = inputs[0]->GetShape().GetNumElements() / num_elems;
119
121 const std::vector<int32_t>& targetShape = {static_cast<int32_t>(num_batch), static_cast<int32_t>(num_elems)};
123
124 auto* reshapeOp = new TosaSerializationOperator(Op_RESHAPE,
125 Attribute_ReshapeAttribute,
126 &attribute,
127 {inputNames[0]},
128 {outputReshapeName});
129 operators.push_back(reshapeOp);
130
131 tensors.push_back(new TosaSerializationTensor(outputReshapeName, targetShape, inputDType0, {}));
132
133 fcInputNames[0] = outputReshapeName;
134 }
135
136
137
139 std::string fcOutputName;
140 bool isInputInt8 = (inputDType0 == DType_INT8);
141 if (isInputInt8)
142 {
144 tensors.push_back(new TosaSerializationTensor(fcOutputName, outputShape0, DType_INT32, {}));
145 }
146 else
147 {
148 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
149 }
150
151
152 TosaFullyConnectedAttribute attribute(inputs[0]->GetQuantizationOffset(),
153 inputs[1]->GetQuantizationOffset());
154
155 std::string& fcOutStr = isInputInt8 ? fcOutputName : outputName;
156 auto* fullyConnected_op = new TosaSerializationOperator(Op_FULLY_CONNECTED,
157 Attribute_FullyConnectedAttribute,
158 &attribute,
159 fcInputNames,
160 {fcOutStr});
161 operators.push_back(fullyConnected_op);
162
163 if (isInputInt8)
164 {
165 int32_t output_zp = outputs[0]->GetQuantizationOffset();
166 double output_scale = outputs[0]->GetQuantizationScales()[0];
167 double input_scale = inputs[0]->GetQuantizationScales()[0];
168 const std::vector<float>& weight_scales = inputs[1]->GetQuantizationScales();
169
170 TosaSerializationOperator* rescaleOp = nullptr;
172 outputName,
173 0,
174 output_zp,
175 false,
176 false,
177 true,
178 true,
179 input_scale,
180 output_scale,
181 weight_scales,
182 &rescaleOp);
183 operators.push_back(rescaleOp);
184 tensors.push_back(new TosaSerializationTensor(outputName,
185 outputShape0,
186 DType_INT8, {}));
187 }
188
189
190
191 return new TosaSerializationBasicBlock(blockName,
193 operators,
194 tensors,
195 inputNames,
196 {outputName});
197}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
bool WeightFromDifferentLayer(const Layer &layer)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
void CreateRescaleTosaOperatorForWeights(const std::string &inputName, const std::string &outputName, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, double input_scale, double output_scale, const std::vector< float > &weight_scales, TosaSerializationOperator **op)
Creates a TOSA rescale operator for weight tensors.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
bool m_BiasEnabled
Enable/disable bias.