ArmNN
 25.11
Loading...
Searching...
No Matches
GeluOperator.cpp File Reference
Include dependency graph for GeluOperator.cpp:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertGeluToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ActivationDescriptor *desc)

Function Documentation

◆ ConvertGeluToTosaOperator()

TosaSerializationBasicBlock * ConvertGeluToTosaOperator ( const Layer * layer,
const std::vector< const TensorInfo * > & inputs,
const std::vector< const TensorInfo * > & outputs,
const ActivationDescriptor * desc )

Definition at line 17 of file GeluOperator.cpp.

21{
22 if (inputs.size() != 1)
23 {
24 throw armnn::Exception("ConvertGeluToTosaOperator: 1 input tensors required.");
25 }
26
27 if (outputs.size() != 1)
28 {
29 throw armnn::Exception("ConvertGeluToTosaOperator: 1 output tensor required.");
30 }
31
32 if (desc->m_Function != ActivationFunction::Gelu)
33 {
34 throw armnn::Exception("ConvertGeluToTosaOperator ActivationDescriptor only supports function Gelu.");
35 }
36
37 std::string inputName = std::string("input_");
38 std::string outputName = std::string("output0_");
39 std::string blockName = std::string("Op_GELU_block_") + GetUniqueTosaMappingID();
40
41 // If a layer is present then the block will be used for execution, so input and output names need to be determined
42 // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
43 if (layer != nullptr)
44 {
45 inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
46 outputName = GenerateUniqueOutputName(*layer);
47 }
48
49 std::vector<TosaSerializationTensor*> tensors;
50 std::vector<TosaSerializationOperator*> operators;
51
52 float input_scale = inputs[0]->GetQuantizationScale();
53 float output_scale = outputs[0]->GetQuantizationScale();
54 int32_t input_zp = inputs[0]->GetQuantizationOffset();
55 int32_t output_zp = outputs[0]->GetQuantizationOffset();
56 DataType inputDType = inputs[0]->GetDataType();
57
58 bool isInt8 = inputDType == DataType::QAsymmS8 || inputDType == DataType::QSymmS8;
59 if (isInt8)
60 {
61 auto gelu_transform = [](float in) -> float {
62 return 0.5f * in * std::erfc(in * static_cast<float>(-0.70710678118654752440));
63 };
64
65 TosaTableAttribute attribute(
66 getTosaConst8bitTable(input_scale, input_zp, output_scale, output_zp, gelu_transform));
67 operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
68 Attribute_TableAttribute,
69 &attribute,
70 {inputName},
71 {outputName}));
72 }
73 else if (inputDType == DataType::QSymmS16 ||
74 inputDType == DataType::Signed32 ||
75 inputDType == DataType::Signed64)
76 {
77 throw Exception("ConvertGeluOperator() only supports int8 quantized types.");
78 }
79 else
80 {
81 throw Exception("ConvertGeluOperator() floating point types currently unimplemented.");
82 }
83
84 // Only add input tensors if connected layer is an input layer.
85 // As intermediate or constant tensors will be created separately.
86 // There also can't be duplicate tensor.
87 std::vector<int32_t> inputShape0;
88 DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
89 if(inputName.find("input_") != std::string::npos)
90 {
91 inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
92 tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
93 }
94
95 std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
96 DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
97 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
98
99 // operatorInputNames/operatorOutputNames ends up being the same as
100 // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
101 return new TosaSerializationBasicBlock(blockName, // name
102 mainName, // region name
103 operators, // operators
104 tensors, // tensors
105 {inputName}, // inputs
106 {outputName}); // outputs
107}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::vector< int16_t > getTosaConst8bitTable(float input_scale, int32_t input_zp, float output_scale, int32_t output_zp, std::function< float(float)> func)
Base class for all ArmNN exceptions so that users can filter to just those.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
DataType
Definition Types.hpp:49
ActivationFunction m_Function
The activation function to use (Sigmoid, TanH, Linear, ReLu, BoundedReLu, SoftReLu,...

References ArmNNToDType(), GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), getTosaConst8bitTable(), GetTosaTensorShape(), GetUniqueTosaMappingID(), ActivationDescriptor::m_Function, and mainName.

Referenced by GetTosaMapping().