ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
LeakyReluOperator.hpp File Reference
#include <Layer.hpp>
#include <tosa_serialization_handler.h>
#include "TosaOperatorUtils.hpp"
Include dependency graph for LeakyReluOperator.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertLeakyReluToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ActivationDescriptor *activationDescriptor)
 

Function Documentation

◆ ConvertLeakyReluToTosaOperator()

TosaSerializationBasicBlock* ConvertLeakyReluToTosaOperator ( const Layer layer,
const std::vector< const TensorInfo * > &  inputs,
const std::vector< const TensorInfo * > &  outputs,
const ActivationDescriptor activationDescriptor 
)

Definition at line 17 of file LeakyReluOperator.cpp.

21 {
22  if (inputs.size() != 1)
23  {
24  throw armnn::Exception("ConvertLeakyReluToTosaOperator: 1 input tensors required.");
25  }
26 
27  if (outputs.size() != 1)
28  {
29  throw armnn::Exception("ConvertLeakyReluToTosaOperator: 1 output tensor required.");
30  }
31 
32  std::string inputName = std::string("input_");
33  std::string outputNameAlpha = std::string("constant0_") + GetUniqueTosaMappingID();
34  std::string outputNameMul = std::string("intermediate1_") + GetUniqueTosaMappingID();
35  std::string outputName = std::string("output0_");
36  std::string blockName = std::string("Op_LEAKY_RELU_block_") + GetUniqueTosaMappingID();
37 
38  // If a layer is present then the block will be used for execution, so input and output names need to be determined
39  // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
40  if (layer != nullptr)
41  {
42  inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
43  outputName = GenerateUniqueOutputName(*layer);
44  }
45 
46  std::vector<TosaSerializationTensor*> tensors;
47 
48  // Only add input tensors if connected layer is an input layer.
49  // As intermediate or constant tensors will be created separately.
50  // There also can't be duplicate tensor.
51  std::vector<int32_t> inputShape0;
52  DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
53  if(inputName.find("input_") != std::string::npos)
54  {
55  inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
56  tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
57  }
58 
59  std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
60  DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
61  tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
62 
63  if (inputDType0 == DType::DType_FP32 ||
64  inputDType0 == DType::DType_FP16)
65  {
66  // const_alpha
67  TosaSerializationOperator* alphaOp = nullptr;
68  TosaSerializationTensor* alphaTensor = nullptr;
69  CreateConstTosaOperator<float>(outputNameAlpha,
70  activationDescriptor->m_A,
71  inputDType0,
72  inputShape0,
73  alphaOp,
74  alphaTensor);
75  tensors.push_back(alphaTensor);
76 
77  // mul
78  int32_t shift = 0;
79  TosaMulAttribute mulAttribute(shift);
80  TosaSerializationOperator* mulOp = new TosaSerializationOperator(Op_MUL,
81  Attribute_MulAttribute,
82  &mulAttribute,
83  {inputName, outputNameAlpha},
84  {outputNameMul});
85  tensors.push_back(new TosaSerializationTensor(outputNameMul, inputShape0, inputDType0, {}));
86 
87  TosaSerializationOperator* op = nullptr;
88  if (activationDescriptor->m_A <= 1.0)
89  {
90  op = new TosaSerializationOperator(Op_MAXIMUM,
91  Attribute_NONE,
92  nullptr,
93  {inputName, outputNameMul},
94  {outputName});
95  }
96  else
97  {
98  op = new TosaSerializationOperator(Op_MINIMUM,
99  Attribute_NONE,
100  nullptr,
101  {inputName, outputNameMul},
102  {outputName});
103 
104  }
105 
106  // operatorInputNames/operatorOutputNames ends up being the same as
107  // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
108  return new TosaSerializationBasicBlock(blockName, // name
109  mainName, // region name
110  {alphaOp, mulOp, op}, // operators
111  tensors, // tensors
112  {inputName}, // inputs
113  {outputName}); // outputs
114  }
115  else
116  {
117  std::string outputNameRescaleAlpha = std::string("intermediate2_") + GetUniqueTosaMappingID();
118  std::string outputNameRescaleIdentity = std::string("intermediate3_") + GetUniqueTosaMappingID();
119  std::string outputNameRescaleMaxMin = std::string("intermediate4_") + GetUniqueTosaMappingID();
120 
121  DType rescale_type = DType::DType_INT32;
122  float alpha = activationDescriptor->m_A;
123  double scale_alpha = inputs[0]->GetQuantizationScale() * alpha / outputs[0]->GetQuantizationScale();
124  double scale_identity = inputs[0]->GetQuantizationScale() / outputs[0]->GetQuantizationScale();
125  int32_t input_zp = inputs[0]->GetQuantizationOffset();
126  int32_t output_zp = outputs[0]->GetQuantizationOffset();
127 
128  // Value op_rescale_alpha_in =
129  // buildRescale(rewriter, op, rescale_type, input, scale_alpha,
130  // input_qtype.getZeroPoint(), 0, true, true);
131  TosaSerializationOperator* rescaleAlphaOp = nullptr;
132  CreateRescaleTosaOperator(inputName,
133  outputNameRescaleAlpha,
134  scale_alpha,
135  input_zp,
136  0,
137  false,
138  false,
139  true,
140  true,
141  &rescaleAlphaOp);
142  tensors.push_back(new TosaSerializationTensor(outputNameRescaleAlpha,
143  GetTosaTensorShape(inputs[0]->GetShape()),
144  rescale_type, {}));
145  // Value op_rescale_identity_in =
146  // buildRescale(rewriter, op, rescale_type, input, scale_identity,
147  // input_qtype.getZeroPoint(), 0, true, true);
148  TosaSerializationOperator* rescaleIdentityOp = nullptr;
149  CreateRescaleTosaOperator(inputName,
150  outputNameRescaleIdentity,
151  scale_identity,
152  input_zp,
153  0,
154  false,
155  false,
156  true,
157  true,
158  &rescaleIdentityOp);
159  tensors.push_back(new TosaSerializationTensor(outputNameRescaleIdentity,
160  GetTosaTensorShape(inputs[0]->GetShape()),
161  rescale_type, {}));
162  // Value result_int32;
163  // if (alpha <= 1.0) {
164  // auto max_op = CreateOpAndInfer<tosa::MaximumOp>(
165  // rewriter, op->getLoc(), rescale_type, op_rescale_identity_in,
166  // op_rescale_alpha_in);
167  // result_int32 = max_op.getResult();
168  // } else {
169  // auto min_op = CreateOpAndInfer<tosa::MinimumOp>(
170  // rewriter, op->getLoc(), rescale_type, op_rescale_identity_in,
171  // op_rescale_alpha_in);
172  // result_int32 = min_op.getResult();
173  // }
174  TosaSerializationOperator* op = nullptr;
175  if (alpha <= 1.0)
176  {
177  op = new TosaSerializationOperator(Op_MAXIMUM,
178  Attribute_NONE,
179  nullptr,
180  {outputNameRescaleAlpha, outputNameRescaleIdentity},
181  {outputNameRescaleMaxMin});
182  }
183  else
184  {
185  op = new TosaSerializationOperator(Op_MINIMUM,
186  Attribute_NONE,
187  nullptr,
188  {outputNameRescaleAlpha, outputNameRescaleIdentity},
189  {outputNameRescaleMaxMin});
190 
191  }
192  tensors.push_back(new TosaSerializationTensor(outputNameRescaleMaxMin,
193  GetTosaTensorShape(inputs[0]->GetShape()),
194  rescale_type, {}));
195 
196  // Value output = buildRescaleFromInt32(rewriter, op, output_type, result_int32,
197  // 1.0, output_qtype.getZeroPoint());
198  TosaSerializationOperator* rescaleOutputOp = nullptr;
199  CreateRescaleTosaOperator(outputNameRescaleMaxMin,
200  outputName,
201  1.0,
202  0,
203  output_zp,
204  false,
205  false,
206  true,
207  true,
208  &rescaleOutputOp);
209 
210  // operatorInputNames/operatorOutputNames ends up being the same as
211  // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
212  return new TosaSerializationBasicBlock(blockName, // name
213  mainName, // region name
214  {rescaleAlphaOp, rescaleIdentityOp, op, rescaleOutputOp}, // operators
215  tensors, // tensors
216  {inputName}, // inputs
217  {outputName}); // outputs
218  }
219 }
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
void CreateRescaleTosaOperator(const std::string &inputName, const std::string &outputName, double scale, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, TosaSerializationOperator **op)
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:47
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
float m_A
Alpha upper bound value used by the activation functions. (BoundedReLu, Linear, TanH,...
Definition: Descriptors.hpp:61

References ArmNNToDType(), GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), GetTosaTensorShape(), and GetUniqueTosaMappingID().

Referenced by GetTosaMapping().