ArmNN
 25.11
Loading...
Searching...
No Matches
LogOperator.cpp File Reference
#include "LogOperator.hpp"
#include "TosaTableUtils.hpp"
Include dependency graph for LogOperator.cpp:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertLogOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ElementwiseUnaryDescriptor *unaryDescriptor)

Function Documentation

◆ ConvertLogOperator()

TosaSerializationBasicBlock * ConvertLogOperator ( const Layer * layer,
const std::vector< const TensorInfo * > & inputs,
const std::vector< const TensorInfo * > & outputs,
const ElementwiseUnaryDescriptor * unaryDescriptor )

Definition at line 13 of file LogOperator.cpp.

17{
18 if (unaryDescriptor->m_Operation != UnaryOperation::Log)
19 {
20 throw armnn::Exception("ConvertLogOperator: Unsupported elementwise unary operation in descriptor.");
21 }
22
23 std::string inputName = std::string("input_");
24 std::string outputName = std::string("output0_");
25 std::string blockName = std::string("Op_LOG_block_") + GetUniqueTosaMappingID();
26
27 // If a layer is present then the block will be used for execution, so input and output names need to be determined
28 // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
29 if(layer != nullptr)
30 {
31 inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
32 outputName = GenerateUniqueOutputName(*layer);
33 }
34
35 std::vector<TosaSerializationTensor*> tensors;
36 std::vector<TosaSerializationOperator*> operators;
37
38 float input_scale = inputs[0]->GetQuantizationScale();
39 float output_scale = outputs[0]->GetQuantizationScale();
40 int32_t input_zp = inputs[0]->GetQuantizationOffset();
41 int32_t output_zp = outputs[0]->GetQuantizationOffset();
42 DataType inputDType = inputs[0]->GetDataType();
43
44 if (inputDType == DataType::QAsymmS8 ||
45 inputDType == DataType::QSymmS8)
46 {
47 const float output_min = static_cast<float>(-128 - output_zp) * output_scale;
48
49 auto log_func = [&](float x) -> float
50 {
51 if (x <= 0.0f)
52 {
53 return output_min;
54 }
55 return std::log(x);
56 };
57
58 TosaTableAttribute attribute(
59 getTosaConst8bitTable(input_scale, input_zp, output_scale, output_zp, log_func));
60 operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
61 Attribute_TableAttribute,
62 &attribute,
63 {inputName},
64 {outputName}));
65 }
66 else if (inputDType == DataType::QSymmS16)
67 {
68 throw Exception("ConvertLogOperator() unsupported int 16 not implemented yet.");
69 // The following generates the table, tosa attribute and operator for int16 log.
70 // However, running the int16 LOG EndToEnd test causes incorrect output values.
71 // At the time of writing the LOG operator there is no requirment for int16 support.
72 // Points to enable int16 in the future:
73 // - TOSA specifies LOG int16 input must have int32 output
74 // - We potentially need a rescale after the int32 LOG output to convert back to int16.
75 /*
76 const float output_min = (-32768 - output_zp) * static_cast<float>(output_scale);
77
78 auto log_func = [&](float x) -> float {
79 if (x <= 0.0f) {
80 return output_min;
81 }
82 return std::log(x);
83 };
84
85 TosaTableAttribute attribute(
86 getTosaConst16bitTable<float>(input_scale, input_zp, output_scale, output_zp, log_func));
87 operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
88 Attribute_TableAttribute,
89 &attribute,
90 {inputName},
91 {outputName}));
92 */
93 }
94 else if (inputDType == DataType::Signed32 ||
95 inputDType == DataType::Signed64)
96 {
97 throw Exception(
98 "ConvertLogOperator() unsupported int 32. Only int 8 and int 16 quantized types are supported.");
99 }
100 // Floating point LOG operator
101 else
102 {
103 operators.push_back(new TosaSerializationOperator(tosa::Op_LOG,
104 Attribute_NONE,
105 nullptr,
106 {inputName},
107 {outputName}));
108 }
109
110 // Only add input tensor if connected layer is an input layer.
111 // As intermediate or constant tensors will be created separately.
112 // There also can't be duplicate tensor.
113 if(inputName.find("input_") != std::string::npos)
114 {
115 std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
116 DType inputDType0 = ArmNNToDType(inputDType);
117 tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
118 }
119
120 std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
121
122 // Re-enable below line for int16 LOG support which requires int32 output in TOSA and remove second line.
123 // DType outputDType0 =
124 // (inputDType == DataType::QSymmS16) ? DType::DType_INT32 : ArmNNToDType(outputs[0]->GetDataType());
125 DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
126
127 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
128
129 // operatorInputNames/operatorOutputNames ends up being the same as
130 // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
131 return new TosaSerializationBasicBlock(blockName, // name
132 mainName, // region name
133 operators, // operators
134 tensors, // tensors
135 {inputName}, // inputs
136 {outputName}); // outputs
137}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::vector< int16_t > getTosaConst8bitTable(float input_scale, int32_t input_zp, float output_scale, int32_t output_zp, std::function< float(float)> func)
Base class for all ArmNN exceptions so that users can filter to just those.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
DataType
Definition Types.hpp:49
UnaryOperation m_Operation
Specifies the elementwiseUnary operation to execute.

References ArmNNToDType(), GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), getTosaConst8bitTable(), GetTosaTensorShape(), GetUniqueTosaMappingID(), ElementwiseUnaryDescriptor::m_Operation, and mainName.

Referenced by GetTosaMapping().