ArmNN
 25.11
Loading...
Searching...
No Matches
MeanLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
6#include "MeanLayer.hpp"
7#include "LayerCloneBase.hpp"
8
10
14
15#include <cstring>
16
17namespace armnn
18{
19
20MeanLayer::MeanLayer(const armnn::MeanDescriptor& param, const char* name)
21 : LayerWithParameters(1, 1, LayerType::Mean, param, name)
22{}
23
24std::unique_ptr<IWorkload> MeanLayer::CreateWorkload(const armnn::IWorkloadFactory& factory) const
25{
26 MeanQueueDescriptor descriptor;
27 descriptor.m_Parameters.m_Axis = m_Param.m_Axis;
28 descriptor.m_Parameters.m_KeepDims = m_Param.m_KeepDims;
29 SetAdditionalInfo(descriptor);
30
31 return factory.CreateWorkload(LayerType::Mean, descriptor, PrepInfoAndDesc(descriptor));
32}
33
35{
36 auto layer = CloneBase<MeanLayer>(graph, m_Param, GetName());
37
38 layer->m_Param.m_Axis = m_Param.m_Axis;
39 layer->m_Param.m_KeepDims = m_Param.m_KeepDims;
40
41 return std::move(layer);
42}
43
45{
47
48 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
49
51
52 std::vector<TensorShape> inferredShapes = InferOutputShapes(
54
55 if (inferredShapes.size() != 1)
56 {
57 throw armnn::LayerValidationException("inferredShapes has "
58 + std::to_string(inferredShapes.size()) +
59 " elements - should only have 1.");
60 }
61
62 if (inferredShapes[0].GetDimensionality() != Dimensionality::Specified)
63 {
64 throw armnn::LayerValidationException("inferredShapes' dimensionality has not been specified.");
65 }
66
67 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "MeanLayer");
68}
69
70std::vector<TensorShape> MeanLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
71{
72 if (inputShapes.size() != 1)
73 {
74 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
75 "\" - should be \"1\".");
76 }
77
78 const TensorShape& input = inputShapes[0];
79
80 auto inputDims = input.GetNumDimensions();
81 if (inputDims < 1 || inputDims > 4)
82 {
83 throw armnn::Exception("ReduceLayer: Reduce supports up to 4D input.");
84 }
85
86 unsigned int rank = input.GetNumDimensions();
87 unsigned int outputRank = 0;
88
89 // Calculate output dimension
90 if (m_Param.m_KeepDims)
91 {
92 outputRank = rank;
93 }
94 else if (m_Param.m_Axis.empty())
95 {
96 outputRank = 1;
97 }
98 else if (m_Param.m_Axis.size() > input.GetNumDimensions())
99 {
100 throw LayerValidationException("MeanLayer: Dimensions to reduce can not be bigger than input dimensions");
101 }
102 else
103 {
104 outputRank = input.GetNumDimensions() - armnn::numeric_cast<unsigned int>(m_Param.m_Axis.size());
105 if (outputRank == 0)
106 {
107 outputRank = 1;
108 }
109 }
110
111 std::vector<unsigned int> dimSizes(outputRank, 1);
112 if (!m_Param.m_Axis.empty())
113 {
114 // Skip the dimension that has been reduced unless keepDims is true.
115 unsigned int outputIndex = 0;
116 for (unsigned int i = 0; i < input.GetNumDimensions(); ++i)
117 {
118 if (std::find(m_Param.m_Axis.begin(), m_Param.m_Axis.end(), i) == m_Param.m_Axis.end())
119 {
120 dimSizes[outputIndex] = armnn::numeric_cast<unsigned int>(input[i]);
121 ++outputIndex;
122 }
123 else if (m_Param.m_KeepDims)
124 {
125 dimSizes[outputIndex] = 1;
126 ++outputIndex;
127 }
128 }
129 }
130 return std::vector<TensorShape>({ TensorShape(outputRank, dimSizes.data()) });
131}
132
134{
135 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
136}
137
138} // namespace armnn
#define CHECK_LOCATION()
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const MeanDescriptor &param, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const MeanDescriptor & GetParameters() const override
MeanLayer(const MeanDescriptor &param, const char *name)
Constructor to create a MeanLayer.
Definition MeanLayer.cpp:20
MeanLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Definition MeanLayer.cpp:34
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
Definition MeanLayer.cpp:70
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of MeanLayer.
Definition MeanLayer.cpp:44
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Mean type.
Definition MeanLayer.cpp:24
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)
A MeanDescriptor for the MeanLayer.
std::vector< unsigned int > m_Axis
Values for the dimensions to reduce.
bool m_KeepDims
Enable/disable keep dimensions. If true, then the reduced dimensions that are of length 1 are kept.