38 layer->m_Param.m_Axis =
m_Param.m_Axis;
39 layer->m_Param.m_KeepDims =
m_Param.m_KeepDims;
41 return std::move(layer);
55 if (inferredShapes.size() != 1)
58 + std::to_string(inferredShapes.size()) +
59 " elements - should only have 1.");
72 if (inputShapes.size() != 1)
74 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
75 "\" - should be \"1\".");
81 if (inputDims < 1 || inputDims > 4)
87 unsigned int outputRank = 0;
94 else if (
m_Param.m_Axis.empty())
111 std::vector<unsigned int> dimSizes(outputRank, 1);
115 unsigned int outputIndex = 0;
125 dimSizes[outputIndex] = 1;
130 return std::vector<TensorShape>({
TensorShape(outputRank, dimSizes.data()) });
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
ShapeInferenceMethod m_ShapeInferenceMethod
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const MeanDescriptor ¶m, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const MeanDescriptor & GetParameters() const override
MeanLayer(const MeanDescriptor ¶m, const char *name)
Constructor to create a MeanLayer.
MeanLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of MeanLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Mean type.
const TensorInfo & GetTensorInfo() const override
const TensorShape & GetShape() const
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)
A MeanDescriptor for the MeanLayer.
std::vector< unsigned int > m_Axis
Values for the dimensions to reduce.
bool m_KeepDims
Enable/disable keep dimensions. If true, then the reduced dimensions that are of length 1 are kept.
LayerDescriptor m_Parameters