ArmNN
 25.11
Loading...
Searching...
No Matches
MeanLayer Class Reference

This layer represents a mean operation. More...

#include <MeanLayer.hpp>

Inheritance diagram for MeanLayer:
[legend]
Collaboration diagram for MeanLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the Mean type.
MeanLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of MeanLayer.
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer.
Public Member Functions inherited from LayerWithParameters< MeanDescriptor >
const MeanDescriptorGetParameters () const override
 If the layer has a descriptor return it.
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
const std::string & GetNameStr () const
const OutputHandlerGetOutputHandler (unsigned int i=0) const
OutputHandlerGetOutputHandler (unsigned int i=0)
ShapeInferenceMethod GetShapeInferenceMethod () const
bool GetAllowExpandedDims () const
const std::vector< InputSlot > & GetInputSlots () const
const std::vector< OutputSlot > & GetOutputSlots () const
std::vector< InputSlot >::iterator BeginInputSlots ()
std::vector< InputSlot >::iterator EndInputSlots ()
std::vector< OutputSlot >::iterator BeginOutputSlots ()
std::vector< OutputSlot >::iterator EndOutputSlots ()
bool IsOutputUnconnected ()
void ResetPriority () const
LayerPriority GetPriority () const
LayerType GetType () const override
 Returns the armnn::LayerType of this layer.
DataType GetDataType () const
const BackendIdGetBackendId () const
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer.
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
virtual void ReleaseConstantData ()
template<typename Op>
void OperateOnConstantTensors (Op op)
const char * GetName () const override
 Returns the name of the layer.
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots.
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots.
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index.
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index.
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index.
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index.
void SetGuid (LayerGuid guid)
LayerGuid GetGuid () const final
 Returns the unique id of the layer.
void AddRelatedLayerName (const std::string layerName)
const std::list< std::string > & GetRelatedLayerNames ()
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer.
Optional< BackendIdGetBackendHint () const
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
void SetAllowExpandedDims (bool allowExpandedDims)
template<typename T>
std::shared_ptr< T > GetAdditionalInformation () const
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)

Protected Member Functions

 MeanLayer (const MeanDescriptor &param, const char *name)
 Constructor to create a MeanLayer.
 ~MeanLayer ()=default
 Default destructor.
Protected Member Functions inherited from LayerWithParameters< MeanDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const MeanDescriptor &param, const char *name)
 ~LayerWithParameters ()=default
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
Protected Member Functions inherited from Layer
virtual ~Layer ()=default
template<typename QueueDescriptor>
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
template<typename QueueDescriptor>
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
template<typename QueueDescriptor>
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
template<typename LayerType, typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
virtual ConstantTensors GetConstantTensorsByRef () override final
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
void SetAdditionalInfo (QueueDescriptor &descriptor) const
Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle.

Additional Inherited Members

Public Types inherited from LayerWithParameters< MeanDescriptor >
using DescriptorType
Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector<std::reference_wrapper<std::shared_ptr<ConstTensorHandle>>>
using ImmutableConstantTensors = std::vector<std::reference_wrapper<const std::shared_ptr<ConstTensorHandle>>>
Protected Attributes inherited from LayerWithParameters< MeanDescriptor >
MeanDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.).
Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
std::vector< OutputHandlerm_OutputHandlers
ShapeInferenceMethod m_ShapeInferenceMethod

Detailed Description

This layer represents a mean operation.

Definition at line 14 of file MeanLayer.hpp.

Constructor & Destructor Documentation

◆ MeanLayer()

MeanLayer ( const MeanDescriptor & param,
const char * name )
protected

Constructor to create a MeanLayer.

Parameters
[in]paramMeanDescriptor to configure the mean operation.
[in]nameOptional name for the layer.

Definition at line 20 of file MeanLayer.cpp.

21 : LayerWithParameters(1, 1, LayerType::Mean, param, name)
22{}

References LayerWithParameters< MeanDescriptor >::LayerWithParameters(), and armnn::Mean.

Referenced by Clone().

◆ ~MeanLayer()

~MeanLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

MeanLayer * Clone ( Graph & graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 34 of file MeanLayer.cpp.

35{
36 auto layer = CloneBase<MeanLayer>(graph, m_Param, GetName());
37
38 layer->m_Param.m_Axis = m_Param.m_Axis;
39 layer->m_Param.m_KeepDims = m_Param.m_KeepDims;
40
41 return std::move(layer);
42}

References Layer::CloneBase(), Layer::GetName(), LayerWithParameters< MeanDescriptor >::m_Param, and MeanLayer().

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory & factory) const
overridevirtual

Makes a workload for the Mean type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 24 of file MeanLayer.cpp.

25{
26 MeanQueueDescriptor descriptor;
27 descriptor.m_Parameters.m_Axis = m_Param.m_Axis;
28 descriptor.m_Parameters.m_KeepDims = m_Param.m_KeepDims;
29 SetAdditionalInfo(descriptor);
30
31 return factory.CreateWorkload(LayerType::Mean, descriptor, PrepInfoAndDesc(descriptor));
32}

References IWorkloadFactory::CreateWorkload(), MeanDescriptor::m_Axis, MeanDescriptor::m_KeepDims, LayerWithParameters< MeanDescriptor >::m_Param, QueueDescriptorWithParameters< LayerDescriptor >::m_Parameters, armnn::Mean, LayerWithParameters< MeanDescriptor >::PrepInfoAndDesc(), and Layer::SetAdditionalInfo().

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy & strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from LayerWithParameters< MeanDescriptor >.

Definition at line 133 of file MeanLayer.cpp.

134{
135 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
136}

References IStrategy::ExecuteStrategy(), Layer::GetName(), and LayerWithParameters< MeanDescriptor >::GetParameters().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > & inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 70 of file MeanLayer.cpp.

71{
72 if (inputShapes.size() != 1)
73 {
74 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
75 "\" - should be \"1\".");
76 }
77
78 const TensorShape& input = inputShapes[0];
79
80 auto inputDims = input.GetNumDimensions();
81 if (inputDims < 1 || inputDims > 4)
82 {
83 throw armnn::Exception("ReduceLayer: Reduce supports up to 4D input.");
84 }
85
86 unsigned int rank = input.GetNumDimensions();
87 unsigned int outputRank = 0;
88
89 // Calculate output dimension
90 if (m_Param.m_KeepDims)
91 {
92 outputRank = rank;
93 }
94 else if (m_Param.m_Axis.empty())
95 {
96 outputRank = 1;
97 }
98 else if (m_Param.m_Axis.size() > input.GetNumDimensions())
99 {
100 throw LayerValidationException("MeanLayer: Dimensions to reduce can not be bigger than input dimensions");
101 }
102 else
103 {
104 outputRank = input.GetNumDimensions() - armnn::numeric_cast<unsigned int>(m_Param.m_Axis.size());
105 if (outputRank == 0)
106 {
107 outputRank = 1;
108 }
109 }
110
111 std::vector<unsigned int> dimSizes(outputRank, 1);
112 if (!m_Param.m_Axis.empty())
113 {
114 // Skip the dimension that has been reduced unless keepDims is true.
115 unsigned int outputIndex = 0;
116 for (unsigned int i = 0; i < input.GetNumDimensions(); ++i)
117 {
118 if (std::find(m_Param.m_Axis.begin(), m_Param.m_Axis.end(), i) == m_Param.m_Axis.end())
119 {
120 dimSizes[outputIndex] = armnn::numeric_cast<unsigned int>(input[i]);
121 ++outputIndex;
122 }
123 else if (m_Param.m_KeepDims)
124 {
125 dimSizes[outputIndex] = 1;
126 ++outputIndex;
127 }
128 }
129 }
130 return std::vector<TensorShape>({ TensorShape(outputRank, dimSizes.data()) });
131}
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)

References TensorShape::GetNumDimensions(), LayerWithParameters< MeanDescriptor >::m_Param, and armnn::numeric_cast().

Referenced by ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of MeanLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 44 of file MeanLayer.cpp.

45{
46 VerifyLayerConnections(1, CHECK_LOCATION());
47
48 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
49
50 VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
51
52 std::vector<TensorShape> inferredShapes = InferOutputShapes(
53 { GetInputSlot(0).GetTensorInfo().GetShape() });
54
55 if (inferredShapes.size() != 1)
56 {
57 throw armnn::LayerValidationException("inferredShapes has "
58 + std::to_string(inferredShapes.size()) +
59 " elements - should only have 1.");
60 }
61
62 if (inferredShapes[0].GetDimensionality() != Dimensionality::Specified)
63 {
64 throw armnn::LayerValidationException("inferredShapes' dimensionality has not been specified.");
65 }
66
67 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "MeanLayer");
68}
#define CHECK_LOCATION()

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), InferOutputShapes(), Layer::m_ShapeInferenceMethod, armnn::Specified, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files: