ArmNN
 25.11
Loading...
Searching...
No Matches
NeonSpaceToBatchNdWorkload.cpp
Go to the documentation of this file.
1//
2// Copyright © 2020-2023 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7
9
10namespace armnn
11{
12
13using namespace armcomputetensorutils;
14
15arm_compute::Status NeonSpaceToBatchNdWorkloadValidate(const TensorInfo& input,
16 const TensorInfo& output,
17 const SpaceToBatchNdDescriptor& descriptor)
18{
19 arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
20 arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
21
22 arm_compute::Status statusSpaceToBatch = arm_compute::Status(arm_compute::ErrorCode::OK);
23 arm_compute::Status statusReshapeInput = arm_compute::Status(arm_compute::ErrorCode::OK);
24 arm_compute::Status statusReshapeOutput = arm_compute::Status(arm_compute::ErrorCode::OK);
25
26 arm_compute::TensorInfo aclReshapeInputInfo = aclInputInfo;
27 arm_compute::TensorInfo aclReshapeOutputInfo = aclOutputInfo;
28
29 // When a spacial dimension is missing (rank=3) set W to 1
30 const unsigned int rank = input.GetNumDimensions();
31 if (rank == 3)
32 {
33 const arm_compute::TensorShape inputShape = aclInputInfo.tensor_shape();
34 const arm_compute::TensorShape outputShape = aclOutputInfo.tensor_shape();
35
36 if (descriptor.m_DataLayout == armnn::DataLayout::NHWC)
37 {
38 // In ACL dimensions are right to left: C, W, H, N
39 aclReshapeInputInfo.set_tensor_shape({inputShape.x(), 1, inputShape.y(), inputShape.z()});
40 aclReshapeOutputInfo.set_tensor_shape({outputShape.x(), 1, outputShape.y(), outputShape.z()});
41 }
42 else if (descriptor.m_DataLayout == armnn::DataLayout::NCHW)
43 {
44 // In ACL dimensions are right to left: W, H, C, N
45 aclReshapeInputInfo.set_tensor_shape({1, inputShape.x(), inputShape.y(), inputShape.z()});
46 aclReshapeOutputInfo.set_tensor_shape({1, outputShape.x(), outputShape.y(), outputShape.z()});
47 }
48 else
49 {
50 throw InvalidArgumentException("Unsupported or unknown DataLayout", CHECK_LOCATION());
51 }
52
53 statusReshapeInput = arm_compute::NEReshapeLayer::validate(&aclInputInfo, &aclReshapeInputInfo);
54 statusReshapeOutput = arm_compute::NEReshapeLayer::validate(&aclReshapeOutputInfo, &aclOutputInfo);
55 }
56
57 // ArmNN blockShape is [H, W] ACl asks for W, H
58 int32_t blockHeight = armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[0]);
59 int32_t blockWidth = (rank == 3) ? 1 : armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[1]);
60
61 unsigned int padLeft = (rank == 3) ? 0 : descriptor.m_PadList[1].first;
62 unsigned int padRight = (rank == 3) ? 0 : descriptor.m_PadList[1].second;
63 arm_compute::Size2D paddingLeftTop = BuildArmComputeSize2D(padLeft,
64 descriptor.m_PadList[0].first);
65 arm_compute::Size2D paddingRightBottom = BuildArmComputeSize2D(padRight,
66 descriptor.m_PadList[0].second);
67
68 statusSpaceToBatch = arm_compute::NESpaceToBatchLayer::validate(rank == 3 ? &aclReshapeInputInfo : &aclInputInfo,
69 blockWidth,
70 blockHeight,
71 paddingLeftTop,
72 paddingRightBottom,
73 rank == 3 ? &aclReshapeOutputInfo : &aclOutputInfo);
74
75 if (statusReshapeInput.error_code() == arm_compute::ErrorCode::OK &&
76 statusReshapeOutput.error_code() == arm_compute::ErrorCode::OK &&
77 statusSpaceToBatch.error_code() == arm_compute::ErrorCode::OK)
78 {
79 return arm_compute::Status(arm_compute::ErrorCode::OK,
80 "All SpaceToBatch layers validate status OK.");
81 }
82 else
83 {
84 return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
85 "SpaceToBatch layer validate status failed."
86 + statusSpaceToBatch.error_description()
87 + statusReshapeInput.error_description()
88 + statusReshapeOutput.error_description());
89 }
90}
91
93 const WorkloadInfo& info)
95{
96 // Report Profiling Details
97 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonSpaceToBatchNdWorkload_Construct",
98 descriptor.m_Parameters,
99 info,
100 this->GetGuid());
101
102 m_Data.ValidateInputsOutputs("NESpaceToBatchNdWorkload", 1, 1);
103
104 arm_compute::ITensor& input = PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Inputs[0])->GetTensor();
105 arm_compute::ITensor& output = PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Outputs[0])->GetTensor();
106
107 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
108 input.info()->set_data_layout(aclDataLayout);
109 output.info()->set_data_layout(aclDataLayout);
110
111 arm_compute::TensorInfo aclReshapeInputInfo = BuildArmComputeTensorInfo(info.m_InputTensorInfos[0],
112 m_Data.m_Parameters.m_DataLayout);
113 arm_compute::TensorInfo aclReshapeOutputInfo = BuildArmComputeTensorInfo(info.m_OutputTensorInfos[0],
114 m_Data.m_Parameters.m_DataLayout);
115
116 const unsigned int rank = info.m_InputTensorInfos[0].GetNumDimensions();
117 if (rank == 3)
118 {
119 const arm_compute::TensorShape inputShape = input.info()->tensor_shape();
120 const arm_compute::TensorShape outputShape = output.info()->tensor_shape();
121
122 // When a spacial dimension is missing set W to 1
123 if (m_Data.m_Parameters.m_DataLayout == armnn::DataLayout::NHWC)
124 {
125 // In ACL dimensions are right to left: C, W, H, N
126 aclReshapeInputInfo.set_tensor_shape({inputShape.x(), 1, inputShape.y(), inputShape.z()});
127 aclReshapeOutputInfo.set_tensor_shape({outputShape.x(), 1, outputShape.y(), outputShape.z()});
128 }
129 else if (m_Data.m_Parameters.m_DataLayout == armnn::DataLayout::NCHW)
130 {
131 // In ACL dimensions are right to left: W, H, C, N
132 aclReshapeInputInfo.set_tensor_shape({1, inputShape.x(), inputShape.y(), inputShape.z()});
133 aclReshapeOutputInfo.set_tensor_shape({1, outputShape.x(), outputShape.y(), outputShape.z()});
134 }
135 else
136 {
137 throw InvalidArgumentException("Unsupported or unknown DataLayout", CHECK_LOCATION());
138 }
139
140 m_ReshapeInputTensor.allocator()->init(aclReshapeInputInfo);
141 m_ReshapeOutputTensor.allocator()->init(aclReshapeOutputInfo);
142
143 InitialiseArmComputeTensorEmpty(m_ReshapeInputTensor);
144 InitialiseArmComputeTensorEmpty(m_ReshapeOutputTensor);
145
146 m_LayerReshapeInput.reset(new arm_compute::NEReshapeLayer());
147 m_LayerReshapeOutput.reset(new arm_compute::NEReshapeLayer());
148
149 m_LayerReshapeInput->configure(&input, &m_ReshapeInputTensor);
150 m_LayerReshapeOutput->configure(&m_ReshapeOutputTensor, &output);
151 }
152
153 // ArmNN blockShape is [H, W] ACl asks for W, H
154 int32_t blockHeight = armnn::numeric_cast<int32_t>(m_Data.m_Parameters.m_BlockShape[0]);
155 int32_t blockWidth = (rank == 3) ? 1: armnn::numeric_cast<int32_t>(descriptor.m_Parameters.m_BlockShape[1]);
156
157 unsigned int padLeft = (rank == 3) ? 0 : descriptor.m_Parameters.m_PadList[1].first;
158 unsigned int padRight = (rank == 3) ? 0 : descriptor.m_Parameters.m_PadList[1].second;
159 arm_compute::Size2D paddingLeftTop = BuildArmComputeSize2D(padLeft,
160 descriptor.m_Parameters.m_PadList[0].first);
161 arm_compute::Size2D paddingRightBottom = BuildArmComputeSize2D(padRight,
162 descriptor.m_Parameters.m_PadList[0].second);
163
164 m_Layer.reset(new arm_compute::NESpaceToBatchLayer());
165 m_Layer->configure((rank == 3) ? &m_ReshapeInputTensor : &input,
166 blockWidth,
167 blockHeight,
168 paddingLeftTop,
169 paddingRightBottom,
170 (rank == 3) ? &m_ReshapeOutputTensor : &output);
171 m_Layer->prepare();
172}
173
175{
176 ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonSpaceToBatchNdWorkload_Execute");
177 if (m_LayerReshapeInput)
178 {
179 m_LayerReshapeInput->run();
180 }
181 if (m_Layer)
182 {
183 m_Layer->run();
184 }
185 if (m_LayerReshapeOutput)
186 {
187 m_LayerReshapeOutput->run();
188 }
189}
190
191} //namespace armnn
#define CHECK_LOCATION()
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
NeonBaseWorkload(const SpaceToBatchNdQueueDescriptor &descriptor, const WorkloadInfo &info)
NeonSpaceToBatchNdWorkload(const SpaceToBatchNdQueueDescriptor &descriptor, const WorkloadInfo &info)
unsigned int GetNumDimensions() const
Definition Tensor.hpp:197
Copyright (c) 2021 ARM Limited and Contributors.
auto PolymorphicPointerDowncast(const SourceType &value)
Polymorphic downcast for shared pointers and build in pointers.
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)
arm_compute::Status NeonSpaceToBatchNdWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const SpaceToBatchNdDescriptor &descriptor)
A SpaceToBatchNdDescriptor for the SpaceToBatchNdLayer.
std::vector< unsigned int > m_BlockShape
Block shape value.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
std::vector< std::pair< unsigned int, unsigned int > > m_PadList
Specifies the padding values for the input dimension: heightPad{top, bottom} widthPad{left,...
Contains information about TensorInfos of a layer.