24.08
|
Go to the documentation of this file.
39 return std::move(layer);
44 if (inputShapes.size() != 1)
46 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
47 "\" - should be \"1\".");
59 + std::to_string(rank) +
")");
67 std::vector<unsigned int> outputDimensionSizes(rank);
68 for (
unsigned int i = 0; i < rank; ++i)
74 return std::vector<TensorShape>({ tensorShape });
87 if (inferredShapes.size() != 1)
90 + std::to_string(inferredShapes.size()) +
91 " elements - should only have 1.");
const TensorInfo & GetTensorInfo() const override
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const PadDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
PadDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
LayerDescriptor m_Parameters
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
A PadDescriptor for the PadLayer.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
PadLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
PadLayer(const PadDescriptor ¶m, const char *name)
Constructor to create a PadLayer.
Base class for all ArmNN exceptions so that users can filter to just those.
void Pad(const TensorInfo &inputInfo, const TensorInfo &outputInfo, const ITensorHandle *inputHandle, ITensorHandle *outputHandle, const PadQueueDescriptor &data)
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Pad type.
const TensorShape & GetShape() const
std::vector< std::pair< unsigned int, unsigned int > > m_PadList
Specifies the padding for input dimension.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
Copyright (c) 2021 ARM Limited and Contributors.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of PadLayer.
PaddingMode m_PaddingMode
Specifies the Padding mode (Constant, Reflect or Symmetric)
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
This layer represents a pad operation.