ArmNN
 25.11
Loading...
Searching...
No Matches
ReduceLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2020 Samsung Electronics Co Ltd and Contributors. All rights reserved.
3// Copyright © 2023-2024 Arm Ltd and Contributors. All rights reserved.
4// SPDX-License-Identifier: MIT
5//
6
7#include "ReduceLayer.hpp"
8#include "LayerCloneBase.hpp"
9
10#include <armnn/TypesUtils.hpp>
11
14
15namespace armnn
16{
17
18ReduceLayer::ReduceLayer(const ReduceDescriptor& param, const char* name)
19 : LayerWithParameters(1, 1, LayerType::Reduce, param, name)
20{
21}
22
23std::unique_ptr<IWorkload> ReduceLayer::CreateWorkload(const IWorkloadFactory& factory) const
24{
25 ReduceQueueDescriptor descriptor;
26 descriptor.m_Parameters.m_vAxis = m_Param.m_vAxis;
27 descriptor.m_Parameters.m_KeepDims = m_Param.m_KeepDims;
28 descriptor.m_Parameters.m_ReduceOperation = m_Param.m_ReduceOperation;
29 SetAdditionalInfo(descriptor);
30
31 return factory.CreateWorkload(LayerType::Reduce, descriptor, PrepInfoAndDesc(descriptor));
32}
33
35{
36 auto layer = CloneBase<ReduceLayer>(graph, m_Param, GetName());
37 layer->m_Param.m_vAxis = m_Param.m_vAxis;
38 layer->m_Param.m_KeepDims = m_Param.m_KeepDims;
39 layer->m_Param.m_ReduceOperation = m_Param.m_ReduceOperation;
40
41 return std::move(layer);
42}
43
45{
47
48 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
49
51
52 const TensorInfo& input = GetInputSlot(0).GetTensorInfo();
53
54 auto inputDims = input.GetNumDimensions();
55 if (inputDims < 1 || inputDims > 4)
56 {
57 throw armnn::LayerValidationException("ReduceLayer: Reduce supports up to 4D input.");
58 }
59
60 std::vector<TensorShape> inferredShapes = InferOutputShapes( {input.GetShape() });
61
62 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "ReduceLayer");
63}
64
65std::vector<TensorShape> ReduceLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
66{
67 if (inputShapes.size() != 1)
68 {
69 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
70 "\" - should be \"1\".");
71 }
72
73 const TensorShape& input = inputShapes[0];
74
75 auto inputDims = input.GetNumDimensions();
76 if (inputDims < 1 || inputDims > 4)
77 {
78 throw armnn::Exception("ReduceLayer: Reduce supports up to 4D input.");
79 }
80
81 unsigned int rank = input.GetNumDimensions();
82 unsigned int outputRank = 0;
83
84 // Calculate output dimension
85 if (m_Param.m_KeepDims)
86 {
87 outputRank = rank;
88 }
89 else if (m_Param.m_vAxis.empty())
90 {
91 outputRank = 1;
92 }
93 else if (m_Param.m_vAxis.size() > input.GetNumDimensions())
94 {
95 throw LayerValidationException("ReduceLayer: Dimensions to reduce can not be bigger than input dimensions");
96 }
97 else
98 {
99 outputRank = input.GetNumDimensions() - armnn::numeric_cast<unsigned int>(m_Param.m_vAxis.size());
100 if (outputRank == 0)
101 {
102 outputRank = 1;
103 }
104 }
105
106 std::vector<unsigned int> dimSizes(outputRank, 1);
107 if (!m_Param.m_vAxis.empty())
108 {
109 // Skip the dimension that has been reduced unless keepDims is true.
110 unsigned int outputIndex = 0;
111 for (unsigned int i = 0; i < input.GetNumDimensions(); ++i)
112 {
113 if (std::find(m_Param.m_vAxis.begin(), m_Param.m_vAxis.end(), i) == m_Param.m_vAxis.end())
114 {
115 dimSizes[outputIndex] = armnn::numeric_cast<unsigned int>(input[i]);
116 ++outputIndex;
117 }
118 else if (m_Param.m_KeepDims)
119 {
120 dimSizes[outputIndex] = 1;
121 ++outputIndex;
122 }
123 }
124 }
125 return std::vector<TensorShape>({ TensorShape(outputRank, dimSizes.data()) });
126}
127
129{
130 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
131}
132
133} // namespace armnn
#define CHECK_LOCATION()
Base class for all ArmNN exceptions so that users can filter to just those.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const ReduceDescriptor &param, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const ReduceDescriptor & GetParameters() const override
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
ReduceLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of ReduceLayer.
ReduceLayer(const ReduceDescriptor &param, const char *name)
Constructor to create a ReduceLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Reduce type.
const TensorShape & GetShape() const
Definition Tensor.hpp:193
unsigned int GetNumDimensions() const
Definition Tensor.hpp:197
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)
void Reduce(const TensorInfo &inputInfo, const TensorInfo &outputInfo, Decoder< float > &input, Encoder< float > &output, const std::vector< uint32_t > axis, const ReduceOperation reduceOperation)
Definition Reduce.cpp:70
A ReduceDescriptor for the REDUCE operators.
bool m_KeepDims
if true then output shape has no change.
std::vector< uint32_t > m_vAxis
The indices of the dimensions to reduce.
ReduceOperation m_ReduceOperation
Specifies the reduction operation to execute.