24.08
|
Go to the documentation of this file.
41 return std::move(layer);
55 if (inputDims < 1 || inputDims > 4)
67 if (inputShapes.size() != 1)
69 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
70 "\" - should be \"1\".");
76 if (inputDims < 1 || inputDims > 4)
82 unsigned int outputRank = 0;
106 std::vector<unsigned int> dimSizes(outputRank, 1);
110 unsigned int outputIndex = 0;
115 dimSizes[outputIndex] = armnn::numeric_cast<unsigned int>(input[i]);
120 dimSizes[outputIndex] = 1;
125 return std::vector<TensorShape>({
TensorShape(outputRank, dimSizes.data()) });
const TensorInfo & GetTensorInfo() const override
unsigned int GetNumDimensions() const
void Reduce(const TensorInfo &inputInfo, const TensorInfo &outputInfo, Decoder< float > &input, Encoder< float > &output, const std::vector< uint32_t > axis, const ReduceOperation reduceOperation)
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
ReduceLayer(const ReduceDescriptor ¶m, const char *name)
Constructor to create a ReduceLayer.
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const ReduceDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
ReduceOperation m_ReduceOperation
Specifies the reduction operation to execute.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of ReduceLayer.
ReduceDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
LayerDescriptor m_Parameters
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
This layer represents a reduction operation.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
ReduceLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Base class for all ArmNN exceptions so that users can filter to just those.
bool m_KeepDims
if true then output shape has no change.
const TensorShape & GetShape() const
std::vector< uint32_t > m_vAxis
The indices of the dimensions to reduce.
Copyright (c) 2021 ARM Limited and Contributors.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
A ReduceDescriptor for the REDUCE operators.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Reduce type.
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0