ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
ReshapeOperator.hpp File Reference
Include dependency graph for ReshapeOperator.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertReshapeToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ReshapeDescriptor *reshapeDescriptor)
 

Function Documentation

◆ ConvertReshapeToTosaOperator()

TosaSerializationBasicBlock* ConvertReshapeToTosaOperator ( const Layer layer,
const std::vector< const TensorInfo * > &  inputs,
const std::vector< const TensorInfo * > &  outputs,
const ReshapeDescriptor reshapeDescriptor 
)

Definition at line 8 of file ReshapeOperator.cpp.

12 {
13  std::string inputName = std::string("input_");
14  std::string outputName = std::string("output0_");
15  std::string blockName = std::string("Op_RESHAPE_block_") + GetUniqueTosaMappingID();
16 
17  // If a layer is present then the block will be used for execution, so input and output names need to be determined
18  // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
19  if(layer != nullptr)
20  {
21  inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
22  outputName = GenerateUniqueOutputName(*layer);
23  }
24 
25  TosaReshapeAttribute attribute(GetTosaTensorShape(reshapeDescriptor->m_TargetShape));
26 
27  auto* op = new TosaSerializationOperator(Op_RESHAPE,
28  Attribute_ReshapeAttribute,
29  &attribute,
30  {inputName},
31  {outputName});
32 
33  std::vector<TosaSerializationTensor*> tensors;
34 
35  std::vector<int32_t> outputShape = GetTosaTensorShape(outputs[0]->GetShape());
36  DType outputDType = ArmNNToDType(outputs[0]->GetDataType());
37 
38  // Only add input tensors if connected layer is an input layer.
39  // As intermediate or constant tensors will be created separately.
40  // There also can't be duplicate tensor.
41  if(inputName.find("input_") != std::string::npos)
42  {
43  // TOSA spec requires input and output shape to be the same size.
44  // Pad the inputShape with 1 values to meet this condition.
45  std::vector<int32_t> inputShape = GetTosaTensorShape(inputs[0]->GetShape());
46  if (inputShape.size() < outputShape.size())
47  {
48  for (size_t i = inputShape.size(); i < outputShape.size(); ++i)
49  {
50  inputShape.emplace_back(1);
51  }
52  }
53 
54  DType inputDType = ArmNNToDType(inputs[0]->GetDataType());
55 
56  tensors.push_back(new TosaSerializationTensor(inputName, inputShape, inputDType, {}));
57  }
58 
59  tensors.push_back(new TosaSerializationTensor(outputName, outputShape, outputDType, {}));
60 
61  // operatorInputNames/operatorOutputNames ends up being the same as
62  // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
63  return new TosaSerializationBasicBlock(blockName, // name
64  mainName, // region name
65  {op}, // operators
66  tensors, // tensors
67  {inputName}, // inputs
68  {outputName}); // outputs
69 }
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
TensorShape m_TargetShape
Target shape value.

References GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), GetTosaTensorShape(), GetUniqueTosaMappingID(), and ReshapeDescriptor::m_TargetShape.

Referenced by GetTosaMapping().