24.08
|
Go to the documentation of this file.
41 if (inputShapes.size() != 1)
43 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
44 "\" - should be \"1\".");
53 unsigned int outBatch = inputShape[0];
56 TensorShape( { outBatch, outHeight, outWidth, outChannels } ) :
57 TensorShape( { outBatch, outChannels, outHeight, outWidth });
64 return std::vector<TensorShape>({ tensorShape });
77 if (inferredShapes.size() != 1)
80 + std::to_string(inferredShapes.size()) +
81 " elements - should only have 1.");
bool m_HalfPixelCenters
Half Pixel Centers.
const TensorInfo & GetTensorInfo() const override
uint32_t m_TargetHeight
Target height value.
A ResizeDescriptor for the ResizeLayer.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
ResizeLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const ResizeDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
ResizeDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of ResizeLayer.
Base class for all ArmNN exceptions so that users can filter to just those.
uint32_t m_TargetWidth
Target width value.
void Resize(Decoder< float > &in, const TensorInfo &inputInfo, Encoder< float > &out, const TensorInfo &outputInfo, DataLayoutIndexed dataLayout, ResizeMethod resizeMethod, bool alignCorners, bool halfPixelCenters)
bool m_AlignCorners
Aligned corners.
const TensorShape & GetShape() const
Copyright (c) 2021 ARM Limited and Contributors.
unsigned int GetChannelsIndex() const
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Resize type.
This layer represents a resize operation.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
ResizeLayer(const ResizeDescriptor ¶m, const char *name)
Constructor to create a ResizeLayer.