ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
RsqrtOperator.hpp File Reference
Include dependency graph for RsqrtOperator.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertRsqrtOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ElementwiseUnaryDescriptor *unaryDescriptor)
 

Function Documentation

◆ ConvertRsqrtOperator()

TosaSerializationBasicBlock* ConvertRsqrtOperator ( const Layer layer,
const std::vector< const TensorInfo * > &  inputs,
const std::vector< const TensorInfo * > &  outputs,
const ElementwiseUnaryDescriptor unaryDescriptor 
)

Definition at line 9 of file RsqrtOperator.cpp.

13 {
14  if (unaryDescriptor->m_Operation != UnaryOperation::Rsqrt)
15  {
16  throw armnn::Exception("ConvertRsqrtOperator: Unsupported elementwise unary operation in descriptor.");
17  }
18 
19  ARMNN_THROW_INVALIDARG_MSG_IF_FALSE(inputs.size() == 1,
20  "ConvertRsqrtOperator: Rsqrt must have only one input");
21 
22  ARMNN_THROW_INVALIDARG_MSG_IF_FALSE(outputs.size() == 1,
23  "ConvertRsqrtOperator: Rsqrt must have only one output");
24 
25 
26  std::string inputName = std::string("input_");
27  std::string outputName = std::string("output0_");
28  std::string blockName = std::string("Op_RSQRT_block_") + GetUniqueTosaMappingID();
29  std::string supportedTypes = std::string(" Supported Types: FLOAT32, FLOAT16 & INT8.");
30 
31  // If a layer is present then the block will be used for execution, so input and output names need to be determined
32  // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
33  if (layer != nullptr)
34  {
35  inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
36  outputName = GenerateUniqueOutputName(*layer);
37  }
38 
39  std::vector<TosaSerializationTensor*> tensors;
40  std::vector<TosaSerializationOperator *> operators;
41 
42  DataType inputDType = inputs[0]->GetDataType();
43 
44  if (inputDType == DataType::QAsymmS8 || inputDType == DataType::QSymmS8)
45  {
46  float input_scale = inputs[0]->GetQuantizationScale();
47  float output_scale = outputs[0]->GetQuantizationScale();
48  int32_t input_zp = inputs[0]->GetQuantizationOffset();
49  int32_t output_zp = outputs[0]->GetQuantizationOffset();
50 
51  const float output_max = static_cast<float>(127 - output_zp) * output_scale;
52 
53  auto rsqrt_func = [&](float x) -> float
54  {
55  if (x <= 0.0f)
56  {
57  return output_max;
58  }
59 
60  return 1.0f / std::sqrt(x);
61  };
62 
63  TosaTableAttribute attribute(
64  getTosaConst8bitTable(input_scale, input_zp, output_scale, output_zp, rsqrt_func));
65 
66  operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
67  Attribute_TableAttribute,
68  &attribute,
69  {inputName},
70  {outputName}));
71  }
72  else if (inputDType == DataType::Float32 || inputDType == DataType::Float16)
73  {
74  operators.push_back(new TosaSerializationOperator(tosa::Op_RSQRT,
75  Attribute_NONE,
76  nullptr,
77  {inputName},
78  {outputName}));
79  }
80  else if (inputDType == DataType::QSymmS16)
81  {
82  throw Exception("ConvertRsqrtOperator(): unsupported datatype INT16 is not implemented yet." + supportedTypes);
83  }
84  else if (inputDType == DataType::Signed32 || inputDType == DataType::Signed64)
85  {
86  throw Exception("ConvertRsqrtOperator(): unsupported datatype INT32 or INT64." + supportedTypes);
87  }
88  else
89  {
90  throw Exception("ConvertRsqrtOperator(): TOSA specification does not support this datatype." + supportedTypes);
91  }
92 
93  // Only add input tensor if connected layer is an input layer.
94  // As intermediate or constant tensors will be created separately.
95  // There also can't be duplicate tensor.
96  if (inputName.find("input_") != std::string::npos)
97  {
98  std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
99  DType inputDType0 = ArmNNToDType(inputDType);
100  tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
101  }
102 
103  std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
104  DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
105 
106  tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
107 
108  // operatorInputNames/operatorOutputNames ends up being the same as
109  // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
110  return new TosaSerializationBasicBlock(blockName, // name
111  mainName, // region name
112  operators, // operators
113  tensors, // tensors
114  {inputName}, // inputs
115  {outputName}); // outputs
116 }
#define ARMNN_THROW_INVALIDARG_MSG_IF_FALSE(_cond, _str)
Definition: Exceptions.hpp:210
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int16_t > getTosaConst8bitTable(float input_scale, int32_t input_zp, float output_scale, int32_t output_zp, std::function< float(float)> func)
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:47
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
DataType
Definition: Types.hpp:49
UnaryOperation m_Operation
Specifies the elementwiseUnary operation to execute.

References ARMNN_THROW_INVALIDARG_MSG_IF_FALSE, GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), getTosaConst8bitTable(), GetTosaTensorShape(), GetUniqueTosaMappingID(), and ElementwiseUnaryDescriptor::m_Operation.

Referenced by GetTosaMapping().