ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
SpaceToDepthLayer.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2019-2024 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "SpaceToDepthLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
9 #include <armnn/TypesUtils.hpp>
12 
15 
16 #include <numeric>
17 
18 using namespace armnnUtils;
19 
20 namespace armnn
21 {
22 
24  : LayerWithParameters(1, 1, LayerType::SpaceToDepth, param, name)
25 {}
26 
27 std::unique_ptr<IWorkload> SpaceToDepthLayer::CreateWorkload(const IWorkloadFactory& factory) const
28 {
29  SpaceToDepthQueueDescriptor descriptor;
32 
33  SetAdditionalInfo(descriptor);
34 
35  return factory.CreateWorkload(LayerType::SpaceToDepth, descriptor, PrepInfoAndDesc(descriptor));
36 }
37 
39 {
40  IgnoreUnused(graph);
41  return CloneBase<SpaceToDepthLayer>(graph, m_Param, GetName());
42 }
43 
44 std::vector<TensorShape> SpaceToDepthLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
45 {
46  if (inputShapes.size() != 1)
47  {
48  throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
49  "\" - should be \"1\".");
50  }
51 
52  TensorShape inputShape = inputShapes[0];
53  TensorShape outputShape(inputShape);
54 
55  DataLayoutIndexed dimensionIndices{m_Param.m_DataLayout};
56  unsigned int hIndex = dimensionIndices.GetHeightIndex();
57  unsigned int wIndex = dimensionIndices.GetWidthIndex();
58  unsigned int cIndex = dimensionIndices.GetChannelsIndex();
59 
60  outputShape[hIndex] = inputShape[hIndex] / m_Param.m_BlockSize;
61  outputShape[wIndex] = inputShape[wIndex] / m_Param.m_BlockSize;
62 
63  outputShape[cIndex] = inputShape[cIndex] * m_Param.m_BlockSize * m_Param.m_BlockSize;
64 
65  return std::vector<TensorShape>({ outputShape });
66 }
67 
69 {
71 
72  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
73 
75 
76  std::vector<TensorShape> inferredShapes = InferOutputShapes({
78 
79  if (inferredShapes.size() != 1)
80  {
81  throw armnn::LayerValidationException("inferredShapes has "
82  + std::to_string(inferredShapes.size()) +
83  " elements - should only have 1.");
84  }
85 
86  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "SpaceToDepthLayer");
87 }
88 
90 {
91  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
92 }
93 
94 } // namespace armnn
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:47
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:410
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:526
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
SpaceToDepthDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
const SpaceToDepthDescriptor & GetParameters() const override
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:100
This layer represents a SpaceToDepth operation.
SpaceToDepthLayer(const SpaceToDepthDescriptor param, const char *name)
Constructor to create a SpaceToDepthLayer.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
SpaceToDepthLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of SpaceToDepthLayer.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the SpaceToDepth type.
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
Copyright (c) 2021 ARM Limited and Contributors.
void IgnoreUnused(Ts &&...)
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition: Types.hpp:494
void SpaceToDepth(const TensorInfo &inputInfo, const TensorInfo &outputInfo, const SpaceToDepthDescriptor &params, Decoder< float > &inputData, Encoder< float > &outputData)
A SpaceToDepthDescriptor for the SpaceToDepthLayer.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
unsigned int m_BlockSize
Scalar specifying the input block size. It must be >= 1.