19{
20 if (inputs.size() != 1)
21 {
22 throw armnn::Exception(
"ConvertTanHToTosaOperator: 1 input tensors required.");
23 }
24
25 if (outputs.size() != 1)
26 {
27 throw armnn::Exception(
"ConvertTanHToTosaOperator: 1 output tensor required.");
28 }
29
30 if (desc->
m_Function != ActivationFunction::TanH)
31 {
32 throw armnn::Exception(
"ConvertTanHToTosaOperator ActivationDescriptor only supports function TanH.");
33 }
34
35 std::string inputName = std::string("input_");
36 std::string outputName = std::string("output0_");
38 std::string supportTypes = std::string(" Supported Datatypes: INT8");
39
40
41
42 if (layer != nullptr)
43 {
46 }
47
48 std::vector<TosaSerializationTensor*> tensors;
49 std::vector<TosaSerializationOperator*> operators;
50
51
52
53
54 std::vector<int32_t> inputShape0;
55 if(inputName.find("input_") != std::string::npos)
56 {
58 DType inputDType0 =
ArmNNToDType(inputs[0]->GetDataType());
59 tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
60 }
61
62 DataType inputDType = inputs[0]->GetDataType();
63
64 bool isInt8 = inputDType == DataType::QAsymmS8 || inputDType == DataType::QSymmS8;
65 if (isInt8)
66 {
67 float inputScale = inputs[0]->GetQuantizationScale();
68 float outputScale = outputs[0]->GetQuantizationScale();
69 int32_t inputZp = inputs[0]->GetQuantizationOffset();
70 int32_t outputZp = outputs[0]->GetQuantizationOffset();
71
72 auto tanhFunc = [desc](float x) -> float
73 {
74
75 return desc->
m_A * (std::tanh(desc->
m_B * x));
76 };
77
78 TosaTableAttribute attribute(
80 operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
81 Attribute_TableAttribute,
82 &attribute,
83 {inputName},
84 {outputName}));
85 }
86 else if (inputDType == DataType::QSymmS16)
87 {
88 throw Exception(
"ConvertTanHToTosaOperator(): INT16 is not yet implemented." + supportTypes);
89 }
90 else if (inputDType == DataType::Float16 ||
91 inputDType == DataType::Float32)
92 {
93 throw Exception(
"ConvertTanHToTosaOperator(): FLOAT16 or FLOAT32 is not yet implemented." + supportTypes);
94 }
95 else
96 {
97 throw Exception(
"ConvertTanHToTosaOperator(): TOSA Spec doesn't support this datatype." + supportTypes);
98 }
99
101 DType outputDType0 =
ArmNNToDType(outputs[0]->GetDataType());
102 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
103
104
105
106 return new TosaSerializationBasicBlock(blockName,
108 operators,
109 tensors,
110 {inputName},
111 {outputName});
112}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::vector< int16_t > getTosaConst8bitTable(float input_scale, int32_t input_zp, float output_scale, int32_t output_zp, std::function< float(float)> func)
Base class for all ArmNN exceptions so that users can filter to just those.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
float m_A
Alpha upper bound value used by the activation functions. (BoundedReLu, Linear, TanH,...
float m_B
Beta lower bound value used by the activation functions. (BoundedReLu, Linear, TanH).
ActivationFunction m_Function
The activation function to use (Sigmoid, TanH, Linear, ReLu, BoundedReLu, SoftReLu,...