ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
TanhOperator.hpp File Reference
Include dependency graph for TanhOperator.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertTanHToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ActivationDescriptor *activationDescriptor)
 

Function Documentation

◆ ConvertTanHToTosaOperator()

TosaSerializationBasicBlock* ConvertTanHToTosaOperator ( const Layer layer,
const std::vector< const TensorInfo * > &  inputs,
const std::vector< const TensorInfo * > &  outputs,
const ActivationDescriptor activationDescriptor 
)

Definition at line 15 of file TanhOperator.cpp.

19 {
20  if (inputs.size() != 1)
21  {
22  throw armnn::Exception("ConvertTanHToTosaOperator: 1 input tensors required.");
23  }
24 
25  if (outputs.size() != 1)
26  {
27  throw armnn::Exception("ConvertTanHToTosaOperator: 1 output tensor required.");
28  }
29 
30  if (desc->m_Function != ActivationFunction::TanH)
31  {
32  throw armnn::Exception("ConvertTanHToTosaOperator ActivationDescriptor only supports function TanH.");
33  }
34 
35  std::string inputName = std::string("input_");
36  std::string outputName = std::string("output0_");
37  std::string blockName = std::string("Op_TANH_block_") + GetUniqueTosaMappingID();
38  std::string supportTypes = std::string(" Supported Datatypes: INT8");
39 
40  // If a layer is present then the block will be used for execution, so input and output names need to be determined
41  // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
42  if (layer != nullptr)
43  {
44  inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
45  outputName = GenerateUniqueOutputName(*layer);
46  }
47 
48  std::vector<TosaSerializationTensor*> tensors;
49  std::vector<TosaSerializationOperator*> operators;
50 
51  // Only add input tensors if connected layer is an input layer.
52  // As intermediate or constant tensors will be created separately.
53  // There also can't be duplicate tensor.
54  std::vector<int32_t> inputShape0;
55  if(inputName.find("input_") != std::string::npos)
56  {
57  inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
58  DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
59  tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
60  }
61 
62  DataType inputDType = inputs[0]->GetDataType();
63 
64  bool isInt8 = inputDType == DataType::QAsymmS8 || inputDType == DataType::QSymmS8;
65  if (isInt8)
66  {
67  float inputScale = inputs[0]->GetQuantizationScale();
68  float outputScale = outputs[0]->GetQuantizationScale();
69  int32_t inputZp = inputs[0]->GetQuantizationOffset();
70  int32_t outputZp = outputs[0]->GetQuantizationOffset();
71 
72  auto tanhFunc = [desc](float x) -> float
73  {
74  // Need to include 'Alpha upper bound value, m_A' and 'Beta lower bound value, m_B'
75  return desc->m_A * (std::tanh(desc->m_B * x));
76  };
77 
78  TosaTableAttribute attribute(
79  getTosaConst8bitTable(inputScale, inputZp, outputScale, outputZp, tanhFunc));
80  operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
81  Attribute_TableAttribute,
82  &attribute,
83  {inputName},
84  {outputName}));
85  }
86  else if (inputDType == DataType::QSymmS16)
87  {
88  throw Exception("ConvertTanHToTosaOperator(): INT16 is not yet implemented." + supportTypes);
89  }
90  else if (inputDType == DataType::Float16 ||
91  inputDType == DataType::Float32)
92  {
93  throw Exception("ConvertTanHToTosaOperator(): FLOAT16 or FLOAT32 is not yet implemented." + supportTypes);
94  }
95  else
96  {
97  throw Exception("ConvertTanHToTosaOperator(): TOSA Spec doesn't support this datatype." + supportTypes);
98  }
99 
100  std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
101  DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
102  tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
103 
104  // operatorInputNames/operatorOutputNames ends up being the same as
105  // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
106  return new TosaSerializationBasicBlock(blockName, // name
107  mainName, // region name
108  operators, // operators
109  tensors, // tensors
110  {inputName}, // inputs
111  {outputName}); // outputs
112 }
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int16_t > getTosaConst8bitTable(float input_scale, int32_t input_zp, float output_scale, int32_t output_zp, std::function< float(float)> func)
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:47
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
DataType
Definition: Types.hpp:49

References GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), GetTosaTensorShape(), GetUniqueTosaMappingID(), and ActivationDescriptor::m_Function.

Referenced by GetTosaMapping().