ArmNN
 25.11
Loading...
Searching...
No Matches
TanhOperator.hpp File Reference
Include dependency graph for TanhOperator.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertTanHToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const ActivationDescriptor *activationDescriptor)

Function Documentation

◆ ConvertTanHToTosaOperator()

TosaSerializationBasicBlock * ConvertTanHToTosaOperator ( const Layer * layer,
const std::vector< const TensorInfo * > & inputs,
const std::vector< const TensorInfo * > & outputs,
const ActivationDescriptor * activationDescriptor )

Definition at line 15 of file TanhOperator.cpp.

19{
20 if (inputs.size() != 1)
21 {
22 throw armnn::Exception("ConvertTanHToTosaOperator: 1 input tensors required.");
23 }
24
25 if (outputs.size() != 1)
26 {
27 throw armnn::Exception("ConvertTanHToTosaOperator: 1 output tensor required.");
28 }
29
30 if (desc->m_Function != ActivationFunction::TanH)
31 {
32 throw armnn::Exception("ConvertTanHToTosaOperator ActivationDescriptor only supports function TanH.");
33 }
34
35 std::string inputName = std::string("input_");
36 std::string outputName = std::string("output0_");
37 std::string blockName = std::string("Op_TANH_block_") + GetUniqueTosaMappingID();
38 std::string supportTypes = std::string(" Supported Datatypes: INT8");
39
40 // If a layer is present then the block will be used for execution, so input and output names need to be determined
41 // using the previous and following layers so the graph is connected correctly. For validation this doesn't matter.
42 if (layer != nullptr)
43 {
44 inputName = GenerateUniqueInputName(layer->GetInputSlot(0));
45 outputName = GenerateUniqueOutputName(*layer);
46 }
47
48 std::vector<TosaSerializationTensor*> tensors;
49 std::vector<TosaSerializationOperator*> operators;
50
51 // Only add input tensors if connected layer is an input layer.
52 // As intermediate or constant tensors will be created separately.
53 // There also can't be duplicate tensor.
54 std::vector<int32_t> inputShape0;
55 if(inputName.find("input_") != std::string::npos)
56 {
57 inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
58 DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
59 tensors.push_back(new TosaSerializationTensor(inputName, inputShape0, inputDType0, {}));
60 }
61
62 DataType inputDType = inputs[0]->GetDataType();
63
64 bool isInt8 = inputDType == DataType::QAsymmS8 || inputDType == DataType::QSymmS8;
65 if (isInt8)
66 {
67 float inputScale = inputs[0]->GetQuantizationScale();
68 float outputScale = outputs[0]->GetQuantizationScale();
69 int32_t inputZp = inputs[0]->GetQuantizationOffset();
70 int32_t outputZp = outputs[0]->GetQuantizationOffset();
71
72 auto tanhFunc = [desc](float x) -> float
73 {
74 // Need to include 'Alpha upper bound value, m_A' and 'Beta lower bound value, m_B'
75 return desc->m_A * (std::tanh(desc->m_B * x));
76 };
77
78 TosaTableAttribute attribute(
79 getTosaConst8bitTable(inputScale, inputZp, outputScale, outputZp, tanhFunc));
80 operators.push_back(new TosaSerializationOperator(tosa::Op_TABLE,
81 Attribute_TableAttribute,
82 &attribute,
83 {inputName},
84 {outputName}));
85 }
86 else if (inputDType == DataType::QSymmS16)
87 {
88 throw Exception("ConvertTanHToTosaOperator(): INT16 is not yet implemented." + supportTypes);
89 }
90 else if (inputDType == DataType::Float16 ||
91 inputDType == DataType::Float32)
92 {
93 throw Exception("ConvertTanHToTosaOperator(): FLOAT16 or FLOAT32 is not yet implemented." + supportTypes);
94 }
95 else
96 {
97 throw Exception("ConvertTanHToTosaOperator(): TOSA Spec doesn't support this datatype." + supportTypes);
98 }
99
100 std::vector<int32_t> outputShape0 = GetTosaTensorShape(outputs[0]->GetShape());
101 DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
102 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
103
104 // operatorInputNames/operatorOutputNames ends up being the same as
105 // blockInputNames/blockOutputNames for one-to-one ArmNN to Tosa mappings
106 return new TosaSerializationBasicBlock(blockName, // name
107 mainName, // region name
108 operators, // operators
109 tensors, // tensors
110 {inputName}, // inputs
111 {outputName}); // outputs
112}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::vector< int16_t > getTosaConst8bitTable(float input_scale, int32_t input_zp, float output_scale, int32_t output_zp, std::function< float(float)> func)
Base class for all ArmNN exceptions so that users can filter to just those.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
DataType
Definition Types.hpp:49

References ArmNNToDType(), GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), getTosaConst8bitTable(), GetTosaTensorShape(), GetUniqueTosaMappingID(), ActivationDescriptor::m_A, ActivationDescriptor::m_B, ActivationDescriptor::m_Function, and mainName.

Referenced by GetTosaMapping().