35 : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
39 descriptor.m_Parameters,
43 const arm_compute::ICLTensor& input =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[0])->GetTensor();
44 arm_compute::ICLTensor& output =
static_cast<IClTensorHandle*
>(
m_Data.
m_Outputs[2])->GetTensor();
46 TensorInfo inputInfo =
info.m_InputTensorInfos[0];
47 TensorInfo outputInfo =
info.m_OutputTensorInfos[2];
52 TensorShape inputLayerShape =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[0])->GetShape();
53 TensorShape cellStateLayerShape =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[2])->GetShape();
54 TensorShape outputLayerShape =
static_cast<IClTensorHandle*
>(
m_Data.
m_Outputs[2])->GetShape();
56 unsigned int maxTime =
m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
57 unsigned int batchSize =
m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
58 unsigned int inputSize = inputLayerShape[2];
59 unsigned int outputSize = outputLayerShape[2];
60 unsigned int numUnits = cellStateLayerShape[1];
62 const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
63 const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
68 if (!
m_Data.m_Parameters.m_TimeMajor)
70 std::unique_ptr<arm_compute::CLPermute> layer(
new arm_compute::CLPermute());
72 TensorInfo permuteOutInfo = inputInfo;
73 permuteOutInfo.SetShape(timeMajorShapeInput);
74 BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
75 armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
78 layer->configure(clCompileContext, &input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
79 m_Permute1.reset(layer.release());
85 for (
unsigned int i = 0; i < maxTime; ++i)
87 arm_compute::CLTensor splitter_out;
88 arm_compute::CLTensor concat_in;
90 auto splitterTensorInfo = inputInfo;
91 auto concatTensorInfo = outputInfo;
92 splitterTensorInfo.SetShape({batchSize, inputSize});
93 concatTensorInfo.SetShape({batchSize, outputSize});
94 BuildArmComputeTensor(splitter_out, splitterTensorInfo);
95 BuildArmComputeTensor(concat_in, concatTensorInfo);
97 armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
98 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
101 m_SplitterOutputsTensors.push_back(std::move(splitter_out));
102 m_ConcatInputsTensors.push_back(std::move(concat_in));
105 for (
unsigned int i = 0; i < maxTime; ++i)
108 m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
109 m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
115 unsigned int numberDimensions = 3;
116 unsigned int dimension = 0;
120 ViewsDescriptor splitterDesc(maxTime, numberDimensions);
121 unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
122 for (
unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
124 splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
125 for (
unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
127 splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
131 std::set<unsigned int> splitAxis =
ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
133 std::unique_ptr<arm_compute::CLSplit> split_layer(
new arm_compute::CLSplit());
134 unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(), *splitAxis.begin());
135 if (!
m_Data.m_Parameters.m_TimeMajor)
137 split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
141 split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
144 split_layer->prepare();
145 m_Splitter.reset(split_layer.release());
151 arm_compute::LSTMParams<arm_compute::ICLTensor> lstm_param;
153 m_InputToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
154 BuildArmComputeTensor(*m_InputToForgetWeightsTensor,
m_Data.m_InputToForgetWeights->GetTensorInfo());
156 m_InputToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
157 BuildArmComputeTensor(*m_InputToCellWeightsTensor,
m_Data.m_InputToCellWeights->GetTensorInfo());
159 m_InputToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
160 BuildArmComputeTensor(*m_InputToOutputWeightsTensor,
m_Data.m_InputToOutputWeights->GetTensorInfo());
162 m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
163 BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor,
m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
165 m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::CLTensor>();
166 BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor,
m_Data.m_RecurrentToCellWeights->GetTensorInfo());
168 m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
169 BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor,
m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
171 m_ForgetGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
172 BuildArmComputeTensor(*m_ForgetGateBiasTensor,
m_Data.m_ForgetGateBias->GetTensorInfo());
174 m_CellBiasTensor = std::make_unique<arm_compute::CLTensor>();
175 BuildArmComputeTensor(*m_CellBiasTensor,
m_Data.m_CellBias->GetTensorInfo());
177 m_OutputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
178 BuildArmComputeTensor(*m_OutputGateBiasTensor,
m_Data.m_OutputGateBias->GetTensorInfo());
181 if (!
m_Data.m_Parameters.m_CifgEnabled)
183 m_InputToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
184 BuildArmComputeTensor(*m_InputToInputWeightsTensor,
m_Data.m_InputToInputWeights->GetTensorInfo());
186 m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
187 BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor,
m_Data.m_RecurrentToInputWeights->GetTensorInfo());
189 m_CellToInputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
190 if (
m_Data.m_CellToInputWeights !=
nullptr)
192 BuildArmComputeTensor(*m_CellToInputWeightsTensor,
m_Data.m_CellToInputWeights->GetTensorInfo());
195 m_InputGateBiasTensor = std::make_unique<arm_compute::CLTensor>();
196 BuildArmComputeTensor(*m_InputGateBiasTensor,
m_Data.m_InputGateBias->GetTensorInfo());
198 lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
199 m_RecurrentToInputWeightsTensor.get(),
200 m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() :
nullptr,
201 m_InputGateBiasTensor.get());
204 if (
m_Data.m_Parameters.m_ProjectionEnabled)
206 m_ProjectionWeightsTensor = std::make_unique<arm_compute::CLTensor>();
207 BuildArmComputeTensor(*m_ProjectionWeightsTensor,
m_Data.m_ProjectionWeights->GetTensorInfo());
209 m_ProjectionBiasTensor = std::make_unique<arm_compute::CLTensor>();
210 if (
m_Data.m_ProjectionBias !=
nullptr)
212 BuildArmComputeTensor(*m_ProjectionBiasTensor,
m_Data.m_ProjectionBias->GetTensorInfo());
215 lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
216 m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() :
nullptr);
219 if (
m_Data.m_Parameters.m_PeepholeEnabled)
221 m_CellToForgetWeightsTensor = std::make_unique<arm_compute::CLTensor>();
222 BuildArmComputeTensor(*m_CellToForgetWeightsTensor,
m_Data.m_CellToForgetWeights->GetTensorInfo());
224 m_CellToOutputWeightsTensor = std::make_unique<arm_compute::CLTensor>();
225 BuildArmComputeTensor(*m_CellToOutputWeightsTensor,
m_Data.m_CellToOutputWeights->GetTensorInfo());
227 lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
230 if (
m_Data.m_Parameters.m_LayerNormEnabled)
232 m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
233 if (!
m_Data.m_Parameters.m_CifgEnabled)
235 BuildArmComputeTensor(*m_InputLayerNormWeightsTensor,
m_Data.m_InputLayerNormWeights->GetTensorInfo());
238 m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
239 BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor,
m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
241 m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
242 BuildArmComputeTensor(*m_CellLayerNormWeightsTensor,
m_Data.m_CellLayerNormWeights->GetTensorInfo());
244 m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::CLTensor>();
245 BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor,
m_Data.m_OutputLayerNormWeights->GetTensorInfo());
247 auto inputNormWeightTensor =
m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
248 lstm_param.set_layer_normalization_params(inputNormWeightTensor,
249 m_ForgetLayerNormWeightsTensor.get(),
250 m_CellLayerNormWeightsTensor.get(),
251 m_OutputLayerNormWeightsTensor.get());
254 arm_compute::ICLTensor& output_state_in =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[1])->GetTensor();
255 arm_compute::ICLTensor& cell_state_in =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[2])->GetTensor();
257 arm_compute::ICLTensor& output_state_out =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[1])->GetTensor();
258 arm_compute::ICLTensor& cell_state_out =
static_cast<IClTensorHandle*
>(
m_Data.
m_Inputs[2])->GetTensor();
260 m_ScratchBuffer = std::make_unique<arm_compute::CLTensor>();
261 if (
m_Data.m_Parameters.m_CifgEnabled)
264 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
269 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
273 float cell_threshold =
m_Data.m_Parameters.m_ClippingThresCell;
274 float projection_threshold =
m_Data.m_Parameters.m_ClippingThresProj;
277 arm_compute::ActivationLayerInfo activationLayerInfo =
280 for (
unsigned int i = 0; i != maxTime; ++i)
284 arm_compute::ICLTensor* outputLSTM;
285 arm_compute::ICLTensor* inputLSTM;
290 if (maxTime == 1 &&
m_Data.m_Parameters.m_TimeMajor)
294 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
295 TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
296 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
297 auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
298 (&input)->
info()->set_tensor_shape(acl_input_shape_shrink);
299 inputLSTM =
const_cast<arm_compute::ICLTensor*
>(&input);
300 (&output)->
info()->set_tensor_shape(acl_output_shape_shrink);
301 outputLSTM = &output;
307 else if (maxTime == 1 && !
m_Data.m_Parameters.m_TimeMajor)
309 TensorShape inputShape =
GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
310 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
311 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
312 m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
313 inputLSTM = &m_PermuteFirstOut;
314 outputLSTM =
const_cast<arm_compute::ICLTensor*
>(m_ConcatInputs[i]);
319 inputLSTM = m_SplitterOutputs[i];
320 outputLSTM =
const_cast<arm_compute::ICLTensor*
>(m_ConcatInputs[i]);
323 std::unique_ptr<arm_compute::CLLSTMLayer> lstm_layer(
new arm_compute::CLLSTMLayer());
324 lstm_layer->configure(clCompileContext,
326 m_InputToForgetWeightsTensor.get(),
327 m_InputToCellWeightsTensor.get(),
328 m_InputToOutputWeightsTensor.get(),
329 m_RecurrentToForgetWeightsTensor.get(),
330 m_RecurrentToCellWeightsTensor.get(),
331 m_RecurrentToOutputWeightsTensor.get(),
332 m_ForgetGateBiasTensor.get(),
333 m_CellBiasTensor.get(),
334 m_OutputGateBiasTensor.get(),
337 m_ScratchBuffer.get(),
344 projection_threshold);
346 m_Layers.emplace_back(std::move(lstm_layer));
349 armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
361 if (!
m_Data.m_Parameters.m_CifgEnabled)
365 if (
m_Data.m_CellToInputWeights !=
nullptr)
372 if (
m_Data.m_Parameters.m_ProjectionEnabled)
375 if (
m_Data.m_ProjectionBias !=
nullptr)
381 if (
m_Data.m_Parameters.m_PeepholeEnabled)
387 if (
m_Data.m_Parameters.m_LayerNormEnabled)
389 if (!
m_Data.m_Parameters.m_CifgEnabled)
400 for (uint32_t i = 0; i < m_Layers.size(); ++i)
402 m_Layers[i]->prepare();
411 TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
412 TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
416 for (
unsigned int i = 0; i < maxTime; ++i)
418 m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
422 for (
unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
424 concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
425 concatDescriptor.SetConcatAxis(dimension);
428 m_Concat.reset(
new arm_compute::CLConcatenateLayer());
429 unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(),
430 concatDescriptor.GetConcatAxis());
431 if (!
m_Data.m_Parameters.m_TimeMajor)
433 TensorInfo concatOuputTensorInfo = outputInfo;
434 concatOuputTensorInfo.SetShape(timeMajorShapeOutput);
435 BuildArmComputeTensor(concat_out, concatOuputTensorInfo);
436 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
438 m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
442 m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
451 if (!
m_Data.m_Parameters.m_TimeMajor)
453 (&output)->
info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
457 (&output)->
info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
464 if (!
m_Data.m_Parameters.m_TimeMajor)
467 std::unique_ptr<arm_compute::CLPermute> layer(
new arm_compute::CLPermute());
470 layer->configure(clCompileContext, &concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
474 layer->configure(clCompileContext, m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
476 m_Permute2.reset(layer.release());