ArmNN
 25.11
Loading...
Searching...
No Matches
NeonUnidirectionalSequenceLstmFloatWorkload Class Reference

#include <NeonUnidirectionalSequenceLstmFloatWorkload.hpp>

Inheritance diagram for NeonUnidirectionalSequenceLstmFloatWorkload:
[legend]
Collaboration diagram for NeonUnidirectionalSequenceLstmFloatWorkload:
[legend]

Public Member Functions

 NeonUnidirectionalSequenceLstmFloatWorkload (const UnidirectionalSequenceLstmQueueDescriptor &descriptor, const WorkloadInfo &info)
virtual void Execute () const override
Public Member Functions inherited from TypedWorkload< QueueDescriptor, armnn::DataType::Float16, armnn::DataType::Float32 >
 TypedWorkload (const QueueDescriptor &descriptor, const WorkloadInfo &info)
Public Member Functions inherited from BaseWorkload< QueueDescriptor >
 BaseWorkload (const QueueDescriptor &descriptor, const WorkloadInfo &info)
virtual const std::string & GetName () const override
void PostAllocationConfigure () override
const QueueDescriptorGetData () const
arm::pipe::ProfilingGuid GetGuid () const final
virtual bool SupportsTensorHandleReplacement () const override
void ReplaceInputTensorHandle (ITensorHandle *tensorHandle, unsigned int slot) override
void ReplaceOutputTensorHandle (ITensorHandle *tensorHandle, unsigned int slot) override
Public Member Functions inherited from IWorkload
virtual ~IWorkload ()
virtual void RegisterDebugCallback (const DebugCallbackFunction &)
virtual armnn::Optional< armnn::MemoryRequirementsGetMemoryRequirements ()

Additional Inherited Members

Protected Attributes inherited from BaseWorkload< QueueDescriptor >
QueueDescriptor m_Data
const arm::pipe::ProfilingGuid m_Guid
const std::string m_Name

Detailed Description

Constructor & Destructor Documentation

◆ NeonUnidirectionalSequenceLstmFloatWorkload()

Definition at line 31 of file NeonUnidirectionalSequenceLstmFloatWorkload.cpp.

33 : FloatWorkload<UnidirectionalSequenceLstmQueueDescriptor>(descriptor, info)
34{
35 // Report Profiling Details
36 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonUnidirectionalSequenceLstmFloatWorkload_Construct",
37 descriptor.m_Parameters,
38 info,
39 GetGuid());
40
41 const arm_compute::ITensor& input = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
42 arm_compute::ITensor& output = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetTensor();
43
44 TensorInfo inputInfo = info.m_InputTensorInfos[0];
45 TensorInfo outputInfo = info.m_OutputTensorInfos[0];
46
47 arm_compute::DataType armComputeDataType = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetDataType();
48 armnn::DataType armnnDataType = GetArmNNDataType(armComputeDataType);
49
50 TensorShape inputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetShape();
51 TensorShape cellStateLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetShape();
52 TensorShape outputLayerShape = static_cast<IAclTensorHandle*>(m_Data.m_Outputs[2])->GetShape();
53
54 unsigned int maxTime = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[0] : inputLayerShape[1];
55 unsigned int batchSize = m_Data.m_Parameters.m_TimeMajor ? inputLayerShape[1] : inputLayerShape[0];
56 unsigned int inputSize = inputLayerShape[2];
57 unsigned int outputSize = outputLayerShape[2];
58 unsigned int numUnits = cellStateLayerShape[1];
59
60 const TensorShape timeMajorShapeInput({maxTime, batchSize, inputSize});
61 const TensorShape timeMajorShapeOutput({maxTime, batchSize, outputSize});
62
63 //
64 // Permute: performed if Unidirectional Sequence Layer inputs/outputs are in batch major format.
65 //
66 if (!m_Data.m_Parameters.m_TimeMajor)
67 {
68 std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
69
70 TensorInfo permuteOutInfo = inputInfo;
71 permuteOutInfo.SetShape(timeMajorShapeInput);
72 BuildArmComputeTensor(m_PermuteFirstOut, permuteOutInfo);
73 armcomputetensorutils::InitialiseArmComputeTensorEmpty(m_PermuteFirstOut);
74
75 // Permute to time major format.
76 layer->configure(&input, &m_PermuteFirstOut, arm_compute::PermutationVector(0U,2U,1U));
77 m_Permute1.reset(layer.release());
78 }
79
80 //
81 // Split and Concat Tensors
82 //
83 for (unsigned int i = 0; i < maxTime; ++i)
84 {
85 arm_compute::Tensor splitter_out;
86 arm_compute::Tensor concat_in;
87
88 auto splitterTensorInfo = inputInfo;
89 auto concatTensorInfo = outputInfo;
90 splitterTensorInfo.SetShape({batchSize, inputSize});
91 concatTensorInfo.SetShape({batchSize, outputSize});
92 BuildArmComputeTensor(splitter_out, splitterTensorInfo);
93 BuildArmComputeTensor(concat_in, concatTensorInfo);
94
95 armcomputetensorutils::InitialiseArmComputeTensorEmpty(splitter_out);
96 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_in);
97
98 // append to std::vector<arm_compute::Tensor>
99 m_SplitterOutputsTensors.push_back(std::move(splitter_out));
100 m_ConcatInputsTensors.push_back(std::move(concat_in));
101 }
102
103 for (unsigned int i = 0; i < maxTime; ++i)
104 {
105 // append to std::vector<arm_compute::ITensor*>
106 m_SplitterOutputs.push_back(&m_SplitterOutputsTensors[i]);
107 m_ConcatInputs.push_back(&m_ConcatInputsTensors[i]);
108 }
109
110 //
111 // Split
112 //
113 unsigned int numberDimensions = 3;
114 unsigned int dimension = 0; // splitting on 0-dimension (i.e. maxTime dimension)
115
116 if (maxTime != 1) // ACL split does not work with only one element to split.
117 {
118 ViewsDescriptor splitterDesc(maxTime, numberDimensions);
119 unsigned int splitterDimSizes[3] = {1, batchSize, inputSize};
120 for (unsigned int outputIdx = 0u; outputIdx < maxTime; ++outputIdx)
121 {
122 splitterDesc.SetViewOriginCoord(outputIdx, dimension, splitterDimSizes[dimension] * outputIdx);
123 for (unsigned int dimIdx = 0u; dimIdx < numberDimensions; ++dimIdx)
124 {
125 splitterDesc.SetViewSize(outputIdx, dimIdx, splitterDimSizes[dimIdx]);
126 }
127 }
128
129 std::set<unsigned int> splitAxis = ComputeSplitAxis(splitterDesc, timeMajorShapeInput);
130
131 std::unique_ptr<arm_compute::NESplit> split_layer(new arm_compute::NESplit());
132 unsigned int aclAxisSplit = CalcAclAxis(splitterDesc.GetNumDimensions(),
133 *splitAxis.begin());
134 if (!m_Data.m_Parameters.m_TimeMajor)
135 {
136 split_layer->configure(&m_PermuteFirstOut, m_SplitterOutputs, aclAxisSplit);
137 } else
138 {
139 split_layer->configure(&input, m_SplitterOutputs, aclAxisSplit);
140 }
141
142 split_layer->prepare();
143 m_Splitter.reset(split_layer.release());
144 }
145
146 //
147 // Lstm
148 //
149 arm_compute::LSTMParams<arm_compute::ITensor> lstm_param;
150
151 m_InputToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
152 BuildArmComputeTensor(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights->GetTensorInfo());
153
154 m_InputToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
155 BuildArmComputeTensor(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights->GetTensorInfo());
156
157 m_InputToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
158 BuildArmComputeTensor(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights->GetTensorInfo());
159
160 m_RecurrentToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
161 BuildArmComputeTensor(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights->GetTensorInfo());
162
163 m_RecurrentToCellWeightsTensor = std::make_unique<arm_compute::Tensor>();
164 BuildArmComputeTensor(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights->GetTensorInfo());
165
166 m_RecurrentToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
167 BuildArmComputeTensor(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights->GetTensorInfo());
168
169 m_ForgetGateBiasTensor = std::make_unique<arm_compute::Tensor>();
170 BuildArmComputeTensor(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias->GetTensorInfo());
171
172 m_CellBiasTensor = std::make_unique<arm_compute::Tensor>();
173 BuildArmComputeTensor(*m_CellBiasTensor, m_Data.m_CellBias->GetTensorInfo());
174
175 m_OutputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
176 BuildArmComputeTensor(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias->GetTensorInfo());
177
178 // for future reference: check the AndroidNN API for the logic here
179 if (!m_Data.m_Parameters.m_CifgEnabled)
180 {
181 m_InputToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
182 BuildArmComputeTensor(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights->GetTensorInfo());
183
184 m_RecurrentToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
185 BuildArmComputeTensor(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights->GetTensorInfo());
186
187 m_CellToInputWeightsTensor = std::make_unique<arm_compute::Tensor>();
188 if (m_Data.m_CellToInputWeights != nullptr)
189 {
190 BuildArmComputeTensor(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights->GetTensorInfo());
191 }
192
193 m_InputGateBiasTensor = std::make_unique<arm_compute::Tensor>();
194 BuildArmComputeTensor(*m_InputGateBiasTensor, m_Data.m_InputGateBias->GetTensorInfo());
195
196 lstm_param.set_cifg_params(m_InputToInputWeightsTensor.get(),
197 m_RecurrentToInputWeightsTensor.get(),
198 m_Data.m_CellToInputWeights ? m_CellToInputWeightsTensor.get() : nullptr,
199 m_InputGateBiasTensor.get());
200 }
201
202 if (m_Data.m_Parameters.m_ProjectionEnabled)
203 {
204 m_ProjectionWeightsTensor = std::make_unique<arm_compute::Tensor>();
205 BuildArmComputeTensor(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights->GetTensorInfo());
206
207 m_ProjectionBiasTensor = std::make_unique<arm_compute::Tensor>();
208 if (m_Data.m_ProjectionBias != nullptr)
209 {
210 BuildArmComputeTensor(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias->GetTensorInfo());
211 }
212
213 lstm_param.set_projection_params(m_ProjectionWeightsTensor.get(),
214 m_Data.m_ProjectionBias ? m_ProjectionBiasTensor.get() : nullptr);
215 }
216
217 if (m_Data.m_Parameters.m_PeepholeEnabled)
218 {
219 m_CellToForgetWeightsTensor = std::make_unique<arm_compute::Tensor>();
220 BuildArmComputeTensor(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights->GetTensorInfo());
221
222 m_CellToOutputWeightsTensor = std::make_unique<arm_compute::Tensor>();
223 BuildArmComputeTensor(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights->GetTensorInfo());
224
225 lstm_param.set_peephole_params(m_CellToForgetWeightsTensor.get(), m_CellToOutputWeightsTensor.get());
226 }
227
228 if (m_Data.m_Parameters.m_LayerNormEnabled)
229 {
230 m_InputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
231 if (!m_Data.m_Parameters.m_CifgEnabled)
232 {
233 BuildArmComputeTensor(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights->GetTensorInfo());
234 }
235
236 m_ForgetLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
237 BuildArmComputeTensor(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights->GetTensorInfo());
238
239 m_CellLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
240 BuildArmComputeTensor(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights->GetTensorInfo());
241
242 m_OutputLayerNormWeightsTensor = std::make_unique<arm_compute::Tensor>();
243 BuildArmComputeTensor(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights->GetTensorInfo());
244
245 auto inputNormWeightTensor = m_Data.m_Parameters.m_CifgEnabled ? nullptr : m_InputLayerNormWeightsTensor.get();
246 lstm_param.set_layer_normalization_params(inputNormWeightTensor,
247 m_ForgetLayerNormWeightsTensor.get(),
248 m_CellLayerNormWeightsTensor.get(),
249 m_OutputLayerNormWeightsTensor.get());
250 }
251
252 arm_compute::ITensor& output_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
253 arm_compute::ITensor& cell_state_in = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
254
255 arm_compute::ITensor& output_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
256 arm_compute::ITensor& cell_state_out = static_cast<IAclTensorHandle*>(m_Data.m_Inputs[2])->GetTensor();
257
258 m_ScratchBuffer = std::make_unique<arm_compute::Tensor>();
259 if (m_Data.m_Parameters.m_CifgEnabled)
260 {
261 // scratch_buffer [num_units * 3, batch_size] with CIFG
262 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 3}, armnnDataType));
263 }
264 else
265 {
266 // scratch_buffer [num_units * 4, batch_size] without CIFG
267 BuildArmComputeTensor(*m_ScratchBuffer, TensorInfo({batchSize, numUnits * 4}, armnnDataType));
268 }
269
270 // Need to be set at negative threshold to be compatible for ACL
271 float cell_threshold = m_Data.m_Parameters.m_ClippingThresCell;
272 float projection_threshold = m_Data.m_Parameters.m_ClippingThresProj;
273
274 // For preparing the object for the class ActivationLayerInfo, consider 5 situations
275 arm_compute::ActivationLayerInfo activationLayerInfo =
276 ConvertLstmActivationFuncToAclLayerInfo(m_Data.m_Parameters.m_ActivationFunc);
277
278 for (unsigned int i = 0; i != maxTime; ++i)
279 {
280 // Set LSTM input and output ITensors depending on:
281 // input format (timeMajor) & number of LSTM batches (maxTime).
282 arm_compute::ITensor* outputLSTM;
283 arm_compute::ITensor* inputLSTM;
284
285 // If there is only one LSTM time major batch, we will not concat OR permute.
286 // Set input of LSTM to be first input ITensor.
287 // Set output of LSTM to be final output ITensor.
288 // LSTM input/output cannot be > 2 dimensions so need to resize its TensorInfo.
289 if (maxTime == 1 && m_Data.m_Parameters.m_TimeMajor)
290 {
291 TensorShape inputShape = GetTensorShape(input.info()->tensor_shape(), 1U);
292 TensorShape outputShape = GetTensorShape((&output)->info()->tensor_shape(), 1U);
293
294 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
295 TensorShape outputShapeShrink({outputShape[1], outputShape[2]});
296
297 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
298 auto acl_output_shape_shrink = BuildArmComputeTensorShape(outputShapeShrink);
299
300 input.info()->set_tensor_shape(acl_input_shape_shrink);
301 inputLSTM = const_cast<arm_compute::ITensor*>(&input);
302
303 output.info()->set_tensor_shape(acl_output_shape_shrink);
304 outputLSTM = &output;
305 }
306 // If there is only one LSTM batch major batch, we will not concat, only permute.
307 // Set input of LSTM to be output of initial permute.
308 // Set output of LSTM to be first element of m_ConcatInputs & use that value later in permute.
309 // LSTM output cannot be > 2 dimensions so need to resize its TensorInfo.
310 else if (maxTime == 1 && !m_Data.m_Parameters.m_TimeMajor)
311 {
312 TensorShape inputShape = GetTensorShape(m_PermuteFirstOut.info()->tensor_shape(), 1U);
313 TensorShape inputShapeShrink({inputShape[1], inputShape[2]});
314 auto acl_input_shape_shrink = BuildArmComputeTensorShape(inputShapeShrink);
315 m_PermuteFirstOut.info()->set_tensor_shape(acl_input_shape_shrink);
316 inputLSTM = &m_PermuteFirstOut;
317
318 outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
319 }
320 // Batch major AND/OR 2+ LSTM batches so will use concat AND/OR permute later on.
321 else
322 {
323 inputLSTM = m_SplitterOutputs[i];
324 outputLSTM = const_cast<arm_compute::ITensor*>(m_ConcatInputs[i]);
325 }
326
327 std::unique_ptr<arm_compute::NELSTMLayer> lstm_layer(new arm_compute::NELSTMLayer());
328 lstm_layer->configure(inputLSTM,
329 m_InputToForgetWeightsTensor.get(),
330 m_InputToCellWeightsTensor.get(),
331 m_InputToOutputWeightsTensor.get(),
332 m_RecurrentToForgetWeightsTensor.get(),
333 m_RecurrentToCellWeightsTensor.get(),
334 m_RecurrentToOutputWeightsTensor.get(),
335 m_ForgetGateBiasTensor.get(),
336 m_CellBiasTensor.get(),
337 m_OutputGateBiasTensor.get(),
338 &output_state_in,
339 &cell_state_in,
340 m_ScratchBuffer.get(),
341 &output_state_out,
342 &cell_state_out,
343 outputLSTM,
344 lstm_param,
345 activationLayerInfo,
346 cell_threshold,
347 projection_threshold);
348
349 m_Layers.emplace_back(std::move(lstm_layer));
350 }
351
352 armcomputetensorutils::InitialiseArmComputeTensorEmpty(*m_ScratchBuffer);
353
354 InitializeArmComputeTensorData(*m_InputToForgetWeightsTensor, m_Data.m_InputToForgetWeights);
355 InitializeArmComputeTensorData(*m_InputToCellWeightsTensor, m_Data.m_InputToCellWeights);
356 InitializeArmComputeTensorData(*m_InputToOutputWeightsTensor, m_Data.m_InputToOutputWeights);
357 InitializeArmComputeTensorData(*m_RecurrentToForgetWeightsTensor, m_Data.m_RecurrentToForgetWeights);
358 InitializeArmComputeTensorData(*m_RecurrentToCellWeightsTensor, m_Data.m_RecurrentToCellWeights);
359 InitializeArmComputeTensorData(*m_RecurrentToOutputWeightsTensor, m_Data.m_RecurrentToOutputWeights);
360 InitializeArmComputeTensorData(*m_ForgetGateBiasTensor, m_Data.m_ForgetGateBias);
361 InitializeArmComputeTensorData(*m_CellBiasTensor, m_Data.m_CellBias);
362 InitializeArmComputeTensorData(*m_OutputGateBiasTensor, m_Data.m_OutputGateBias);
363
364 if (!m_Data.m_Parameters.m_CifgEnabled)
365 {
366 InitializeArmComputeTensorData(*m_InputToInputWeightsTensor, m_Data.m_InputToInputWeights);
367 InitializeArmComputeTensorData(*m_RecurrentToInputWeightsTensor, m_Data.m_RecurrentToInputWeights);
368 if (m_Data.m_CellToInputWeights != nullptr)
369 {
370 InitializeArmComputeTensorData(*m_CellToInputWeightsTensor, m_Data.m_CellToInputWeights);
371 }
372 InitializeArmComputeTensorData(*m_InputGateBiasTensor, m_Data.m_InputGateBias);
373 }
374
375 if (m_Data.m_Parameters.m_ProjectionEnabled)
376 {
377 InitializeArmComputeTensorData(*m_ProjectionWeightsTensor, m_Data.m_ProjectionWeights);
378 if (m_Data.m_ProjectionBias != nullptr)
379 {
380 InitializeArmComputeTensorData(*m_ProjectionBiasTensor, m_Data.m_ProjectionBias);
381 }
382 }
383
384 if (m_Data.m_Parameters.m_PeepholeEnabled)
385 {
386 InitializeArmComputeTensorData(*m_CellToForgetWeightsTensor, m_Data.m_CellToForgetWeights);
387 InitializeArmComputeTensorData(*m_CellToOutputWeightsTensor, m_Data.m_CellToOutputWeights);
388 }
389
390 if (m_Data.m_Parameters.m_LayerNormEnabled)
391 {
392 if (!m_Data.m_Parameters.m_CifgEnabled)
393 {
394 InitializeArmComputeTensorData(*m_InputLayerNormWeightsTensor, m_Data.m_InputLayerNormWeights);
395 }
396 InitializeArmComputeTensorData(*m_ForgetLayerNormWeightsTensor, m_Data.m_ForgetLayerNormWeights);
397 InitializeArmComputeTensorData(*m_CellLayerNormWeightsTensor, m_Data.m_CellLayerNormWeights);
398 InitializeArmComputeTensorData(*m_OutputLayerNormWeightsTensor, m_Data.m_OutputLayerNormWeights);
399 }
400
401 // Force Compute Library to perform the necessary copying and reshaping.
402 // After which delete all the input tensors that will no longer be needed.
403 for (uint32_t i = 0; i < m_Layers.size(); ++i)
404 {
405 m_Layers[i]->prepare();
406 }
407
408 //
409 // Concat
410 //
411
412 // Expand dimensions of LSTM outputs adding one empty dimension to fit concatenate inputs.
413 TensorShape shape = GetTensorShape(m_ConcatInputs[0]->info()->tensor_shape(), 1U);
414 TensorShape shapeExpandTimeMajor({1, shape[0], shape[1]});
415 TensorShape shapeExpandBatchMajor({shape[0], 1, shape[1]});
416
417 if (maxTime != 1) // ACL concat does not work with only one element to concatenate.
418 {
419 for (unsigned int i = 0; i < maxTime; ++i)
420 {
421 m_ConcatInputs[i]->info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
422 }
423
424 ConcatDescriptor concatDescriptor(maxTime, numberDimensions); // maxTime = num inputs (aka. number of views).
425 for (unsigned int inputIdx = 0u; inputIdx < maxTime; ++inputIdx)
426 {
427 concatDescriptor.SetViewOriginCoord(inputIdx, dimension, inputIdx);
428 concatDescriptor.SetConcatAxis(dimension);
429 }
430
431 m_Concat.reset(new arm_compute::NEConcatenateLayer());
432 unsigned int aclAxisConcat = CalcAclAxis(concatDescriptor.GetNumDimensions(), concatDescriptor.GetConcatAxis());
433 if (!m_Data.m_Parameters.m_TimeMajor)
434 {
435 TensorInfo concatOutputTensorInfo = outputInfo;
436 concatOutputTensorInfo.SetShape(timeMajorShapeOutput);
437 BuildArmComputeTensor(concat_out, concatOutputTensorInfo);
438 armcomputetensorutils::InitialiseArmComputeTensorEmpty(concat_out);
439
440 m_Concat->configure(m_ConcatInputs, &concat_out, aclAxisConcat);
441 }
442 else
443 {
444 m_Concat->configure(m_ConcatInputs, &output, aclAxisConcat);
445 }
446
447 m_Concat->prepare();
448 }
449 // If only one LSTM batch, we do not concat and/or permute.
450 // Must ensure final output info is expanded to correct batch major dimensions.
451 else
452 {
453 if (!m_Data.m_Parameters.m_TimeMajor)
454 {
455 output.info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandBatchMajor));
456 }
457 else
458 {
459 output.info()->set_tensor_shape(BuildArmComputeTensorShape(shapeExpandTimeMajor));
460 }
461 }
462
463 //
464 // Permute: only done if input/output are in batch major format.
465 //
466 if (!m_Data.m_Parameters.m_TimeMajor)
467 {
468 // Output now time major. Permute output back to batch major.
469 std::unique_ptr<arm_compute::NEPermute> layer(new arm_compute::NEPermute());
470 if (maxTime != 1)
471 {
472 layer->configure(&concat_out, &output, arm_compute::PermutationVector(0U, 2U, 1U));
473 }
474 else
475 {
476 layer->configure(m_ConcatInputs[0], &output, arm_compute::PermutationVector(0U, 2U, 1U));
477 }
478 m_Permute2.reset(layer.release());
479 }
480
481 FreeUnusedTensors();
482}
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
std::set< unsigned int > ComputeSplitAxis(const armnn::SplitterDescriptor &desc, const TensorShape &input)
Calculates the axis values for split operation.
OriginsDescriptor ConcatDescriptor
arm_compute::ActivationLayerInfo ConvertLstmActivationFuncToAclLayerInfo(uint32_t activationFunction)
void InitializeArmComputeTensorData(arm_compute::Tensor &tensor, TensorInfo tensorInfo, const ITensorHandle *handle)
DataType
Definition Types.hpp:49
armnn::TensorShape GetTensorShape(unsigned int numberOfBatches, unsigned int numberOfChannels, unsigned int height, unsigned int width, const armnn::DataLayout dataLayout)

References ARMNN_REPORT_PROFILING_WORKLOAD_DESC, armnn::ComputeSplitAxis(), armnn::ConvertLstmActivationFuncToAclLayerInfo(), OriginsDescriptor::GetConcatAxis(), BaseWorkload< QueueDescriptor >::GetGuid(), OriginsDescriptor::GetNumDimensions(), ViewsDescriptor::GetNumDimensions(), armnnUtils::GetTensorShape(), armnn::info, armnn::InitializeArmComputeTensorData(), BaseWorkload< QueueDescriptor >::m_Data, QueueDescriptorWithParameters< LayerDescriptor >::m_Parameters, OriginsDescriptor::SetConcatAxis(), TensorInfo::SetShape(), OriginsDescriptor::SetViewOriginCoord(), ViewsDescriptor::SetViewOriginCoord(), and ViewsDescriptor::SetViewSize().

Member Function Documentation

◆ Execute()

void Execute ( ) const
overridevirtual

Implements IWorkload.

Definition at line 484 of file NeonUnidirectionalSequenceLstmFloatWorkload.cpp.

485{
486 ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonUnidirectionalSequenceLstmFloatWorkload_Execute");
487 if (m_Permute1)
488 {
489 m_Permute1->run();
490 }
491 if (m_Splitter)
492 {
493 m_Splitter->run();
494 }
495 for (uint32_t i = 0; i < m_Layers.size(); ++i)
496 {
497 m_Layers[i]->run();
498 }
499 if (m_Concat)
500 {
501 m_Concat->run();
502 }
503 if (m_Permute2)
504 {
505 m_Permute2->run();
506 }
507}
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.

References ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID.


The documentation for this class was generated from the following files: