ArmNN
 24.08
StridedSliceLayer Class Reference

This layer represents a strided slice operation. More...

#include <StridedSliceLayer.hpp>

Inheritance diagram for StridedSliceLayer:
[legend]
Collaboration diagram for StridedSliceLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the StridedSlice type. More...
 
StridedSliceLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer. More...
 
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties. More...
 
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of StridedSliceLayer. More...
 
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer. More...
 
- Public Member Functions inherited from LayerWithParameters< StridedSliceDescriptor >
const StridedSliceDescriptorGetParameters () const override
 If the layer has a descriptor return it. More...
 
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company). More...
 
- Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
 
const std::string & GetNameStr () const
 
const OutputHandlerGetOutputHandler (unsigned int i=0) const
 
OutputHandlerGetOutputHandler (unsigned int i=0)
 
ShapeInferenceMethod GetShapeInferenceMethod () const
 
bool GetAllowExpandedDims () const
 
const std::vector< InputSlot > & GetInputSlots () const
 
const std::vector< OutputSlot > & GetOutputSlots () const
 
std::vector< InputSlot >::iterator BeginInputSlots ()
 
std::vector< InputSlot >::iterator EndInputSlots ()
 
std::vector< OutputSlot >::iterator BeginOutputSlots ()
 
std::vector< OutputSlot >::iterator EndOutputSlots ()
 
bool IsOutputUnconnected ()
 
void ResetPriority () const
 
LayerPriority GetPriority () const
 
LayerType GetType () const override
 Returns the armnn::LayerType of this layer. More...
 
DataType GetDataType () const
 
const BackendIdGetBackendId () const
 
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer. More...
 
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
 
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
 
virtual void ReleaseConstantData ()
 
template<typename Op >
void OperateOnConstantTensors (Op op)
 
const char * GetName () const override
 Returns the name of the layer. More...
 
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots. More...
 
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots. More...
 
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index. More...
 
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index. More...
 
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index. More...
 
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index. More...
 
void SetGuid (LayerGuid guid)
 
LayerGuid GetGuid () const final
 Returns the unique id of the layer. More...
 
void AddRelatedLayerName (const std::string layerName)
 
const std::list< std::string > & GetRelatedLayerNames ()
 
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
 
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer. More...
 
Optional< BackendIdGetBackendHint () const
 
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
 
void SetAllowExpandedDims (bool allowExpandedDims)
 
template<typename T >
std::shared_ptr< T > GetAdditionalInformation () const
 
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)
 
virtual const BaseDescriptorGetParameters () const override
 If the layer has a descriptor return it. More...
 

Protected Member Functions

 StridedSliceLayer (const StridedSliceDescriptor &param, const char *name)
 Constructor to create a StridedSliceLayer. More...
 
 ~StridedSliceLayer ()=default
 Default destructor. More...
 
- Protected Member Functions inherited from LayerWithParameters< StridedSliceDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const StridedSliceDescriptor &param, const char *name)
 
 ~LayerWithParameters ()=default
 
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *Layer::CreateWorkload. More...
 
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer. More...
 
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
 
- Protected Member Functions inherited from Layer
virtual ~Layer ()=default
 
template<typename QueueDescriptor >
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
 
template<typename QueueDescriptor >
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
 
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
 
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
 
template<typename QueueDescriptor >
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *Layer::CreateWorkload. More...
 
template<typename LayerType , typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
 
virtual ConstantTensors GetConstantTensorsByRef () override final
 
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
 
void SetAdditionalInfo (QueueDescriptor &descriptor) const
 
- Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle. More...
 

Additional Inherited Members

- Public Types inherited from LayerWithParameters< StridedSliceDescriptor >
using DescriptorType = StridedSliceDescriptor
 
- Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector< std::reference_wrapper< std::shared_ptr< ConstTensorHandle > >>
 
using ImmutableConstantTensors = std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >>
 
- Protected Attributes inherited from LayerWithParameters< StridedSliceDescriptor >
StridedSliceDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.). More...
 
- Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
 
std::vector< OutputHandlerm_OutputHandlers
 
ShapeInferenceMethod m_ShapeInferenceMethod
 

Detailed Description

This layer represents a strided slice operation.

Definition at line 13 of file StridedSliceLayer.hpp.

Constructor & Destructor Documentation

◆ StridedSliceLayer()

StridedSliceLayer ( const StridedSliceDescriptor param,
const char *  name 
)
protected

Constructor to create a StridedSliceLayer.

Parameters
[in]paramStridedSliceDescriptor to configure the strided slice layer.
[in]nameOptional name for the layer.

Definition at line 20 of file StridedSliceLayer.cpp.

21  : LayerWithParameters(1, 1, LayerType::StridedSlice, param, name)
22 {
23 }

◆ ~StridedSliceLayer()

~StridedSliceLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

StridedSliceLayer * Clone ( Graph graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 45 of file StridedSliceLayer.cpp.

46 {
47  return CloneBase<StridedSliceLayer>(graph, m_Param, GetName());
48 }

References Layer::GetName(), and LayerWithParameters< StridedSliceDescriptor >::m_Param.

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory factory) const
overridevirtual

Makes a workload for the StridedSlice type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 25 of file StridedSliceLayer.cpp.

26 {
27  StridedSliceQueueDescriptor descriptor;
28 
29  descriptor.m_Parameters.m_Begin = m_Param.m_Begin;
30  descriptor.m_Parameters.m_End = m_Param.m_End;
31  descriptor.m_Parameters.m_Stride = m_Param.m_Stride;
32 
33  // Optional parameters
34  descriptor.m_Parameters.m_BeginMask = m_Param.m_BeginMask;
35  descriptor.m_Parameters.m_EndMask = m_Param.m_EndMask;
36  descriptor.m_Parameters.m_EllipsisMask = m_Param.m_EllipsisMask;
37  descriptor.m_Parameters.m_NewAxisMask = m_Param.m_NewAxisMask;
38  descriptor.m_Parameters.m_ShrinkAxisMask = m_Param.m_ShrinkAxisMask;
39 
40  SetAdditionalInfo(descriptor);
41 
42  return factory.CreateWorkload(LayerType::StridedSlice, descriptor, PrepInfoAndDesc(descriptor));
43 }

References IWorkloadFactory::CreateWorkload(), StridedSliceDescriptor::m_Begin, StridedSliceDescriptor::m_BeginMask, StridedSliceDescriptor::m_EllipsisMask, StridedSliceDescriptor::m_End, StridedSliceDescriptor::m_EndMask, StridedSliceDescriptor::m_NewAxisMask, LayerWithParameters< StridedSliceDescriptor >::m_Param, QueueDescriptorWithParameters< LayerDescriptor >::m_Parameters, StridedSliceDescriptor::m_ShrinkAxisMask, StridedSliceDescriptor::m_Stride, LayerWithParameters< StridedSliceDescriptor >::PrepInfoAndDesc(), Layer::SetAdditionalInfo(), and armnn::StridedSlice.

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from Layer.

Definition at line 203 of file StridedSliceLayer.cpp.

204 {
205  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
206 }

References IStrategy::ExecuteStrategy(), Layer::GetName(), and LayerWithParameters< StridedSliceDescriptor >::GetParameters().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > &  inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 52 of file StridedSliceLayer.cpp.

54 {
55  if (inputShapes.size() != 1)
56  {
57  throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
58  "\" - should be \"1\".");
59  }
60 
61  TensorShape inputShape = inputShapes[0];
62  std::vector<unsigned int> outputShape;
63  unsigned int amountDimShrunk{0};
64 
65  // Getting the actual number of output dimensions, including axes added with the NewAxisMask
66  unsigned int outputDims = inputShape.GetNumDimensions();
67  for(unsigned int i = 0; i < m_Param.m_Begin.size(); ++i)
68  {
69  // Adding to dimension count for every set bit of NewAxisMask not covered by the EllipsisMask
70  if(m_Param.m_NewAxisMask & (1 << i) && !(m_Param.m_EllipsisMask & (1 << i)))
71  {
72  ++outputDims;
73  }
74  }
75 
76  // Modifying the EllipsisMask based on the NewAxisMask (expand for any newly added axes)
77  // and the NewAxisMask based on the EllipsisMask (offset based on the expanded ellipsis)
78  int realEllipsisMask = 0, realNewAxisMask = 0;
79  // The number of bits the ellipsis mask was expanded by
80  unsigned int ellipsisExpandedBy = 0;
81  for(unsigned int i = 0; i < outputDims; ++i)
82  {
83  if(m_Param.m_EllipsisMask & (1 << i))
84  {
85  // The end index of the expanded ellipsis mask (start is at i)
86  // End Index calculation - i+1 (for non-expanded ellipsis) + outputDims-inputDims (number of added dims)
87  unsigned int endIdx = std::min(i + 1u + outputDims - inputShape.GetNumDimensions(), outputDims);
88 
89  // Calculation: the total size of the mask -1 for the already existing bit in the original mask
90  ellipsisExpandedBy = endIdx - i - 1;
91 
92  // Setting mask bit to 1 for the entire expanded ellipsis
93  for(; i < endIdx; ++i)
94  {
95  realEllipsisMask |= (1 << i);
96  }
97  }
98 
99  // Setting the real NewAxisMask based on the expanded ellipsis size
100  if(m_Param.m_NewAxisMask & (1 << (i - ellipsisExpandedBy)))
101  {
102  realNewAxisMask |= (1 << i);
103  }
104  }
105 
106  // The backwards offset by which i is ahead of the actual inputTensor dimension
107  unsigned int inputDimOffset = 0;
108  // Iterating through the parameters and inferring output shape
109  for (unsigned int i = 0; i < outputDims; ++i)
110  {
111  // Add entire dimension if EllipsisMask is set
112  if(realEllipsisMask & (1 << i))
113  {
114  outputShape.push_back(inputShape[i - inputDimOffset]);
115  continue;
116  }
117  // Add dimension of length 1 if NewAxisMask is set
118  if(realNewAxisMask & (1 << i))
119  {
120  outputShape.push_back(1);
121  ++inputDimOffset;
122  continue;
123  }
124  // Fill the rest of the inferred shape (dimensions greater than the input shape)
125  if(i >= inputShape.GetNumDimensions())
126  {
127  // If EllipsisMask was set at any point, the TensorFlow behavior is to fill the rest of the tensor with 1
128  // Otherwise, the remaining dimensions from the inputShape (which were skipped over) are used
129  if(realEllipsisMask > 0)
130  {
131  outputShape.push_back(1);
132  }
133  else
134  {
135  outputShape.push_back(inputShape[i - inputDimOffset]);
136  }
137  continue;
138  }
139 
140  int stride = m_Param.m_Stride[i];
141  int start = m_Param.GetStartForAxis(inputShape, i);
142  int stop = m_Param.GetStopForAxis(inputShape, i, start);
143 
144  if (m_Param.m_ShrinkAxisMask & (1 << i))
145  {
146  amountDimShrunk+=1;
147 
148  // If the difference between the start point and the end point of the slice on an axis being shrunk
149  // is greater than 1 then throw an error as the output will not be large enough to hold the slice
150  if (((m_Param.m_Begin[i] - m_Param.m_End[i]) > 1) || ((m_Param.m_Begin[i] - m_Param.m_End[i]) < -1))
151  {
152  throw LayerValidationException(
153  "StridedSlice: Attempting to take a larger slice than can fit in inferred output");
154  }
155 
156  if (stride < 0)
157  {
158  throw LayerValidationException(
159  "StridedSlice: Stride can not be negative with Shrink Axis Mask set.");
160  }
161  continue;
162  }
163 
164  int newSize = stride > 0 ? ((stop - start) + stride - 1) / stride :
165  ((start - stop) - stride - 1) / -stride;
166 
167  // Making sure the dimension size doesn't go out of bounds
168  newSize = std::max(0, newSize);
169  newSize = std::min(newSize, armnn::numeric_cast<int>(inputShape[i - inputDimOffset]));
170 
171  outputShape.push_back(armnn::numeric_cast<unsigned int>(newSize));
172  }
173 
174  if (outputShape.size() == 0 && (inputShape.GetNumDimensions() - amountDimShrunk) == 0)
175  {
176  outputShape.push_back(1);
177  }
178 
179  return std::vector<TensorShape>({
180  TensorShape(armnn::numeric_cast<unsigned int>(outputShape.size()), &outputShape[0]) });
181 }

References TensorShape::GetNumDimensions(), StridedSliceDescriptor::GetStartForAxis(), StridedSliceDescriptor::GetStopForAxis(), StridedSliceDescriptor::m_Begin, StridedSliceDescriptor::m_EllipsisMask, StridedSliceDescriptor::m_End, StridedSliceDescriptor::m_NewAxisMask, LayerWithParameters< StridedSliceDescriptor >::m_Param, StridedSliceDescriptor::m_ShrinkAxisMask, and StridedSliceDescriptor::m_Stride.

Referenced by StridedSliceLayer::ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of StridedSliceLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 183 of file StridedSliceLayer.cpp.

184 {
186 
187  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
188 
190 
191  auto inferredShapes = InferOutputShapes({GetInputSlot(0).GetTensorInfo().GetShape()});
192 
193  if (inferredShapes.size() != 1)
194  {
195  throw armnn::LayerValidationException("inferredShapes has "
196  + std::to_string(inferredShapes.size()) +
197  " elements - should only have 1.");
198  }
199 
200  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "StridedSliceLayer");
201 }

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), StridedSliceLayer::InferOutputShapes(), Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files:
armnn::OutputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:100
armnn::StridedSliceDescriptor::m_Begin
std::vector< int > m_Begin
Begin values for the input that will be sliced.
Definition: Descriptors.hpp:1342
armnn::StridedSliceDescriptor::m_EllipsisMask
int32_t m_EllipsisMask
Ellipsis mask value.
Definition: Descriptors.hpp:1357
CHECK_LOCATION
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
armnn::LayerType::StridedSlice
@ StridedSlice
armnn::Layer::ValidateAndCopyShape
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:457
armnn::Layer::GetOutputSlot
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
armnn::StridedSliceDescriptor::m_BeginMask
int32_t m_BeginMask
Begin mask value.
Definition: Descriptors.hpp:1350
armnn::Layer::GetInputSlot
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
armnn::LayerWithParameters< StridedSliceDescriptor >::GetParameters
const StridedSliceDescriptor & GetParameters() const override
Definition: LayerWithParameters.hpp:19
armnn::Layer::GetName
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
armnn::StridedSliceDescriptor::GetStopForAxis
int GetStopForAxis(const TensorShape &inputShape, unsigned int axis, int startForAxis) const
Definition: Descriptors.cpp:420
armnn::InputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:614
armnn::LayerWithParameters< StridedSliceDescriptor >::m_Param
StridedSliceDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Definition: LayerWithParameters.hpp:52
armnn::LayerWithParameters< StridedSliceDescriptor >::PrepInfoAndDesc
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
Definition: LayerWithParameters.hpp:44
armnn::LayerValidationException
Definition: Exceptions.hpp:105
armnn::Layer::VerifyShapeInferenceType
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:526
armnn::Layer::SetAdditionalInfo
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:303
armnn::Exception
Base class for all ArmNN exceptions so that users can filter to just those.
Definition: Exceptions.hpp:46
armnn::StridedSliceDescriptor::m_EndMask
int32_t m_EndMask
End mask value.
Definition: Descriptors.hpp:1353
armnn::StridedSliceDescriptor::m_ShrinkAxisMask
int32_t m_ShrinkAxisMask
Shrink axis mask value. If set, the nth specification shrinks the dimensionality by 1.
Definition: Descriptors.hpp:1355
armnn::StridedSliceDescriptor::m_Stride
std::vector< int > m_Stride
Stride values for the input that will be sliced.
Definition: Descriptors.hpp:1346
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
armnn::StridedSliceDescriptor::GetStartForAxis
int GetStartForAxis(const TensorShape &inputShape, unsigned int axis) const
Definition: Descriptors.cpp:393
armnn::StridedSliceDescriptor::m_End
std::vector< int > m_End
End values for the input that will be sliced.
Definition: Descriptors.hpp:1344
armnn::Layer::VerifyLayerConnections
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:410
armnn::StridedSliceLayer::InferOutputShapes
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
Definition: StridedSliceLayer.cpp:52
armnn::LayerWithParameters< StridedSliceDescriptor >::LayerWithParameters
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const StridedSliceDescriptor &param, const char *name)
Definition: LayerWithParameters.hpp:30
armnn::Layer::m_ShapeInferenceMethod
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
armnn::StridedSliceDescriptor::m_NewAxisMask
int32_t m_NewAxisMask
New axis mask value.
Definition: Descriptors.hpp:1360