ArmNN
 25.11
Loading...
Searching...
No Matches
StridedSliceLayer Class Reference

This layer represents a strided slice operation. More...

#include <StridedSliceLayer.hpp>

Inheritance diagram for StridedSliceLayer:
[legend]
Collaboration diagram for StridedSliceLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the StridedSlice type.
StridedSliceLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer.
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of StridedSliceLayer.
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer.
Public Member Functions inherited from LayerWithParameters< StridedSliceDescriptor >
const StridedSliceDescriptorGetParameters () const override
 If the layer has a descriptor return it.
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
const std::string & GetNameStr () const
const OutputHandlerGetOutputHandler (unsigned int i=0) const
OutputHandlerGetOutputHandler (unsigned int i=0)
ShapeInferenceMethod GetShapeInferenceMethod () const
bool GetAllowExpandedDims () const
const std::vector< InputSlot > & GetInputSlots () const
const std::vector< OutputSlot > & GetOutputSlots () const
std::vector< InputSlot >::iterator BeginInputSlots ()
std::vector< InputSlot >::iterator EndInputSlots ()
std::vector< OutputSlot >::iterator BeginOutputSlots ()
std::vector< OutputSlot >::iterator EndOutputSlots ()
bool IsOutputUnconnected ()
void ResetPriority () const
LayerPriority GetPriority () const
LayerType GetType () const override
 Returns the armnn::LayerType of this layer.
DataType GetDataType () const
const BackendIdGetBackendId () const
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer.
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
virtual void ReleaseConstantData ()
template<typename Op>
void OperateOnConstantTensors (Op op)
const char * GetName () const override
 Returns the name of the layer.
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots.
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots.
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index.
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index.
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index.
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index.
void SetGuid (LayerGuid guid)
LayerGuid GetGuid () const final
 Returns the unique id of the layer.
void AddRelatedLayerName (const std::string layerName)
const std::list< std::string > & GetRelatedLayerNames ()
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer.
Optional< BackendIdGetBackendHint () const
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
void SetAllowExpandedDims (bool allowExpandedDims)
template<typename T>
std::shared_ptr< T > GetAdditionalInformation () const
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)

Protected Member Functions

 StridedSliceLayer (const StridedSliceDescriptor &param, const char *name)
 Constructor to create a StridedSliceLayer.
 ~StridedSliceLayer ()=default
 Default destructor.
Protected Member Functions inherited from LayerWithParameters< StridedSliceDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const StridedSliceDescriptor &param, const char *name)
 ~LayerWithParameters ()=default
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
Protected Member Functions inherited from Layer
virtual ~Layer ()=default
template<typename QueueDescriptor>
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
template<typename QueueDescriptor>
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
template<typename QueueDescriptor>
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
template<typename LayerType, typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
virtual ConstantTensors GetConstantTensorsByRef () override final
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
void SetAdditionalInfo (QueueDescriptor &descriptor) const
Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle.

Additional Inherited Members

Public Types inherited from LayerWithParameters< StridedSliceDescriptor >
using DescriptorType
Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector<std::reference_wrapper<std::shared_ptr<ConstTensorHandle>>>
using ImmutableConstantTensors = std::vector<std::reference_wrapper<const std::shared_ptr<ConstTensorHandle>>>
Protected Attributes inherited from LayerWithParameters< StridedSliceDescriptor >
StridedSliceDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.).
Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
std::vector< OutputHandlerm_OutputHandlers
ShapeInferenceMethod m_ShapeInferenceMethod

Detailed Description

This layer represents a strided slice operation.

Definition at line 13 of file StridedSliceLayer.hpp.

Constructor & Destructor Documentation

◆ StridedSliceLayer()

StridedSliceLayer ( const StridedSliceDescriptor & param,
const char * name )
protected

Constructor to create a StridedSliceLayer.

Parameters
[in]paramStridedSliceDescriptor to configure the strided slice layer.
[in]nameOptional name for the layer.

Definition at line 20 of file StridedSliceLayer.cpp.

21 : LayerWithParameters(1, 1, LayerType::StridedSlice, param, name)
22{
23}

References LayerWithParameters< StridedSliceDescriptor >::LayerWithParameters(), and armnn::StridedSlice().

Referenced by Clone().

◆ ~StridedSliceLayer()

~StridedSliceLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

StridedSliceLayer * Clone ( Graph & graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 45 of file StridedSliceLayer.cpp.

46{
47 return CloneBase<StridedSliceLayer>(graph, m_Param, GetName());
48}

References Layer::CloneBase(), Layer::GetName(), LayerWithParameters< StridedSliceDescriptor >::m_Param, and StridedSliceLayer().

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory & factory) const
overridevirtual

Makes a workload for the StridedSlice type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 25 of file StridedSliceLayer.cpp.

26{
27 StridedSliceQueueDescriptor descriptor;
28
29 descriptor.m_Parameters.m_Begin = m_Param.m_Begin;
30 descriptor.m_Parameters.m_End = m_Param.m_End;
31 descriptor.m_Parameters.m_Stride = m_Param.m_Stride;
32
33 // Optional parameters
34 descriptor.m_Parameters.m_BeginMask = m_Param.m_BeginMask;
35 descriptor.m_Parameters.m_EndMask = m_Param.m_EndMask;
36 descriptor.m_Parameters.m_EllipsisMask = m_Param.m_EllipsisMask;
37 descriptor.m_Parameters.m_NewAxisMask = m_Param.m_NewAxisMask;
38 descriptor.m_Parameters.m_ShrinkAxisMask = m_Param.m_ShrinkAxisMask;
39
40 SetAdditionalInfo(descriptor);
41
42 return factory.CreateWorkload(LayerType::StridedSlice, descriptor, PrepInfoAndDesc(descriptor));
43}

References IWorkloadFactory::CreateWorkload(), StridedSliceDescriptor::m_Begin, StridedSliceDescriptor::m_BeginMask, StridedSliceDescriptor::m_EllipsisMask, StridedSliceDescriptor::m_End, StridedSliceDescriptor::m_EndMask, StridedSliceDescriptor::m_NewAxisMask, LayerWithParameters< StridedSliceDescriptor >::m_Param, QueueDescriptorWithParameters< LayerDescriptor >::m_Parameters, StridedSliceDescriptor::m_ShrinkAxisMask, StridedSliceDescriptor::m_Stride, LayerWithParameters< StridedSliceDescriptor >::PrepInfoAndDesc(), Layer::SetAdditionalInfo(), and armnn::StridedSlice.

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy & strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from LayerWithParameters< StridedSliceDescriptor >.

Definition at line 203 of file StridedSliceLayer.cpp.

204{
205 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
206}

References IStrategy::ExecuteStrategy(), Layer::GetName(), and LayerWithParameters< StridedSliceDescriptor >::GetParameters().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > & inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 52 of file StridedSliceLayer.cpp.

54{
55 if (inputShapes.size() != 1)
56 {
57 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
58 "\" - should be \"1\".");
59 }
60
61 TensorShape inputShape = inputShapes[0];
62 std::vector<unsigned int> outputShape;
63 unsigned int amountDimShrunk{0};
64
65 // Getting the actual number of output dimensions, including axes added with the NewAxisMask
66 unsigned int outputDims = inputShape.GetNumDimensions();
67 for(unsigned int i = 0; i < m_Param.m_Begin.size(); ++i)
68 {
69 // Adding to dimension count for every set bit of NewAxisMask not covered by the EllipsisMask
70 if(m_Param.m_NewAxisMask & (1 << i) && !(m_Param.m_EllipsisMask & (1 << i)))
71 {
72 ++outputDims;
73 }
74 }
75
76 // Modifying the EllipsisMask based on the NewAxisMask (expand for any newly added axes)
77 // and the NewAxisMask based on the EllipsisMask (offset based on the expanded ellipsis)
78 int realEllipsisMask = 0, realNewAxisMask = 0;
79 // The number of bits the ellipsis mask was expanded by
80 unsigned int ellipsisExpandedBy = 0;
81 for(unsigned int i = 0; i < outputDims; ++i)
82 {
83 if(m_Param.m_EllipsisMask & (1 << i))
84 {
85 // The end index of the expanded ellipsis mask (start is at i)
86 // End Index calculation - i+1 (for non-expanded ellipsis) + outputDims-inputDims (number of added dims)
87 unsigned int endIdx = std::min(i + 1u + outputDims - inputShape.GetNumDimensions(), outputDims);
88
89 // Calculation: the total size of the mask -1 for the already existing bit in the original mask
90 ellipsisExpandedBy = endIdx - i - 1;
91
92 // Setting mask bit to 1 for the entire expanded ellipsis
93 for(; i < endIdx; ++i)
94 {
95 realEllipsisMask |= (1 << i);
96 }
97 }
98
99 // Setting the real NewAxisMask based on the expanded ellipsis size
100 if(m_Param.m_NewAxisMask & (1 << (i - ellipsisExpandedBy)))
101 {
102 realNewAxisMask |= (1 << i);
103 }
104 }
105
106 // The backwards offset by which i is ahead of the actual inputTensor dimension
107 unsigned int inputDimOffset = 0;
108 // Iterating through the parameters and inferring output shape
109 for (unsigned int i = 0; i < outputDims; ++i)
110 {
111 // Add entire dimension if EllipsisMask is set
112 if(realEllipsisMask & (1 << i))
113 {
114 outputShape.push_back(inputShape[i - inputDimOffset]);
115 continue;
116 }
117 // Add dimension of length 1 if NewAxisMask is set
118 if(realNewAxisMask & (1 << i))
119 {
120 outputShape.push_back(1);
121 ++inputDimOffset;
122 continue;
123 }
124 // Fill the rest of the inferred shape (dimensions greater than the input shape)
125 if(i >= inputShape.GetNumDimensions())
126 {
127 // If EllipsisMask was set at any point, the TensorFlow behavior is to fill the rest of the tensor with 1
128 // Otherwise, the remaining dimensions from the inputShape (which were skipped over) are used
129 if(realEllipsisMask > 0)
130 {
131 outputShape.push_back(1);
132 }
133 else
134 {
135 outputShape.push_back(inputShape[i - inputDimOffset]);
136 }
137 continue;
138 }
139
140 int stride = m_Param.m_Stride[i];
141 int start = m_Param.GetStartForAxis(inputShape, i);
142 int stop = m_Param.GetStopForAxis(inputShape, i, start);
143
144 if (m_Param.m_ShrinkAxisMask & (1 << i))
145 {
146 amountDimShrunk+=1;
147
148 // If the difference between the start point and the end point of the slice on an axis being shrunk
149 // is greater than 1 then throw an error as the output will not be large enough to hold the slice
150 if (((m_Param.m_Begin[i] - m_Param.m_End[i]) > 1) || ((m_Param.m_Begin[i] - m_Param.m_End[i]) < -1))
151 {
152 throw LayerValidationException(
153 "StridedSlice: Attempting to take a larger slice than can fit in inferred output");
154 }
155
156 if (stride <= 0)
157 {
158 // Prevent divide by zero error below
159 throw LayerValidationException("StridedSlice: Stride must be 1 or more.");
160 }
161 continue;
162 }
163
164 int newSize = stride > 0 ? ((stop - start) + stride - 1) / stride :
165 ((start - stop) - stride - 1) / -stride;
166
167 // Making sure the dimension size doesn't go out of bounds
168 newSize = std::max(0, newSize);
169 newSize = std::min(newSize, armnn::numeric_cast<int>(inputShape[i - inputDimOffset]));
170
171 outputShape.push_back(armnn::numeric_cast<unsigned int>(newSize));
172 }
173
174 if (outputShape.size() == 0 && (inputShape.GetNumDimensions() - amountDimShrunk) == 0)
175 {
176 outputShape.push_back(1);
177 }
178
179 return std::vector<TensorShape>({
180 TensorShape(armnn::numeric_cast<unsigned int>(outputShape.size()), &outputShape[0]) });
181}
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)

References TensorShape::GetNumDimensions(), LayerWithParameters< StridedSliceDescriptor >::m_Param, and armnn::numeric_cast().

Referenced by ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of StridedSliceLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 183 of file StridedSliceLayer.cpp.

184{
185 VerifyLayerConnections(1, CHECK_LOCATION());
186
187 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
188
189 VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
190
191 auto inferredShapes = InferOutputShapes({GetInputSlot(0).GetTensorInfo().GetShape()});
192
193 if (inferredShapes.size() != 1)
194 {
195 throw armnn::LayerValidationException("inferredShapes has "
196 + std::to_string(inferredShapes.size()) +
197 " elements - should only have 1.");
198 }
199
200 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "StridedSliceLayer");
201}
#define CHECK_LOCATION()

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), InferOutputShapes(), Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files: