ArmNN
 25.11
Loading...
Searching...
No Matches
BatchToSpaceNdQueueDescriptor Struct Reference

#include <WorkloadData.hpp>

Inheritance diagram for BatchToSpaceNdQueueDescriptor:
[legend]
Collaboration diagram for BatchToSpaceNdQueueDescriptor:
[legend]

Public Member Functions

void Validate (const WorkloadInfo &workloadInfo) const
Public Member Functions inherited from QueueDescriptorWithParameters< BatchToSpaceNdDescriptor >
virtual ~QueueDescriptorWithParameters ()=default
Public Member Functions inherited from QueueDescriptor
virtual ~QueueDescriptor ()=default
void ValidateTensorNumDimensions (const TensorInfo &tensor, std::string const &descName, unsigned int numDimensions, std::string const &tensorName) const
void ValidateTensorNumDimNumElem (const TensorInfo &tensorInfo, unsigned int numDimension, unsigned int numElements, std::string const &tensorName) const
void ValidateInputsOutputs (const std::string &descName, unsigned int numExpectedIn, unsigned int numExpectedOut) const
template<typename T>
const T * GetAdditionalInformation () const

Additional Inherited Members

Public Attributes inherited from QueueDescriptorWithParameters< BatchToSpaceNdDescriptor >
BatchToSpaceNdDescriptor m_Parameters
Public Attributes inherited from QueueDescriptor
std::vector< ITensorHandle * > m_Inputs
std::vector< ITensorHandle * > m_Outputs
void * m_AdditionalInfoObject
bool m_AllowExpandedDims = false
Protected Member Functions inherited from QueueDescriptorWithParameters< BatchToSpaceNdDescriptor >
 QueueDescriptorWithParameters ()=default
QueueDescriptorWithParametersoperator= (QueueDescriptorWithParameters const &)=default
Protected Member Functions inherited from QueueDescriptor
 QueueDescriptor ()
 QueueDescriptor (QueueDescriptor const &)=default
QueueDescriptoroperator= (QueueDescriptor const &)=default

Detailed Description

Definition at line 462 of file WorkloadData.hpp.

Member Function Documentation

◆ Validate()

void Validate ( const WorkloadInfo & workloadInfo) const

Definition at line 2535 of file WorkloadData.cpp.

2536{
2537 const std::string descriptorName{"BatchToSpaceNdQueueDescriptor"};
2538
2539 ValidateNumInputs(workloadInfo, descriptorName, 1);
2540 ValidateNumOutputs(workloadInfo, descriptorName, 1);
2541
2542 const TensorInfo& inputTensorInfo = workloadInfo.m_InputTensorInfos[0];
2543 const TensorInfo& outputTensorInfo = workloadInfo.m_OutputTensorInfos[0];
2544
2545 if (m_Parameters.m_BlockShape.size() != m_Parameters.m_Crops.size())
2546 {
2547 throw InvalidArgumentException(descriptorName + ": Crops must contain the same number of "
2548 "dimensions as Block Shape.");
2549 }
2550
2551 if (m_Parameters.m_BlockShape.size() == 2)
2552 {
2553 ValidateTensorNumDimensions(inputTensorInfo, descriptorName, 4, "input");
2554 ValidateTensorNumDimensions(outputTensorInfo, descriptorName, 4, "output");
2555 }
2556 else if (m_Parameters.m_BlockShape.size() == 1)
2557 {
2558 ValidateTensorNumDimensions(inputTensorInfo, descriptorName, 3, "input");
2559 ValidateTensorNumDimensions(outputTensorInfo, descriptorName, 3, "output");
2560 }
2561 else
2562 {
2563 throw InvalidArgumentException(descriptorName + ": Invalid Block and Crops size.");
2564 }
2565
2566 // In a 4D tensor, there will be 2 spatialDimensions (H and W), and the for loop will run twice.
2567 // In a 3D tensor, there will be 1 spatialDimensions, and the for loop will run once.
2568 unsigned int firstSpatialDimension = m_Parameters.m_DataLayout == DataLayout::NCHW ? 2 : 1;
2569 for (unsigned int i = 0; i < m_Parameters.m_BlockShape.size(); ++i)
2570 {
2571 unsigned int spatialDimension = firstSpatialDimension + i;
2572 unsigned int cropSize = m_Parameters.m_Crops[i].first + m_Parameters.m_Crops[i].second;
2573 unsigned int outputSize = inputTensorInfo.GetShape()[spatialDimension] * m_Parameters.m_BlockShape[i];
2574 if (cropSize > outputSize)
2575 {
2576 throw InvalidArgumentException(descriptorName + ": CropSize must be less than or equal to the uncropped"
2577 "outputSize in dimension: " + to_string(spatialDimension) + ".");
2578 }
2579 }
2580
2581 std::vector<DataType> supportedTypes =
2582 {
2589 };
2590
2591 ValidateDataTypes(inputTensorInfo, supportedTypes, descriptorName);
2592 ValidateTensorDataTypesMatch(inputTensorInfo, outputTensorInfo, descriptorName, "input", "output");
2593}
const TensorShape & GetShape() const
Definition Tensor.hpp:193
std::vector< unsigned int > m_BlockShape
Block shape values.
std::vector< std::pair< unsigned int, unsigned int > > m_Crops
The values to crop from the input dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
void ValidateTensorNumDimensions(const TensorInfo &tensor, std::string const &descName, unsigned int numDimensions, std::string const &tensorName) const
std::vector< TensorInfo > m_OutputTensorInfos
std::vector< TensorInfo > m_InputTensorInfos

References armnn::BFloat16, armnn::Float16, armnn::Float32, TensorInfo::GetShape(), WorkloadInfo::m_InputTensorInfos, WorkloadInfo::m_OutputTensorInfos, QueueDescriptorWithParameters< BatchToSpaceNdDescriptor >::m_Parameters, armnn::NCHW, armnn::QAsymmS8, armnn::QAsymmU8, armnn::QSymmS16, and QueueDescriptor::ValidateTensorNumDimensions().


The documentation for this struct was generated from the following files: