CMSIS-NN
Version 3.1.0
CMSIS NN Software Library
|
Functions | |
arm_status | arm_fully_connected_mat_q7_vec_q15 (const q15_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q15_t *pOut, q15_t *vec_buffer) |
Mixed Q15-Q7 fully-connected layer function. More... | |
arm_status | arm_fully_connected_mat_q7_vec_q15_opt (const q15_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q15_t *pOut, q15_t *vec_buffer) |
Mixed Q15-Q7 opt fully-connected layer function. More... | |
arm_status | arm_fully_connected_q15 (const q15_t *pV, const q15_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q15_t *bias, q15_t *pOut, q15_t *vec_buffer) |
Q15 opt fully-connected layer function. More... | |
arm_status | arm_fully_connected_q15_opt (const q15_t *pV, const q15_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q15_t *bias, q15_t *pOut, q15_t *vec_buffer) |
Q15 opt fully-connected layer function. More... | |
arm_status | arm_fully_connected_q7 (const q7_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q7_t *pOut, q15_t *vec_buffer) |
Q7 basic fully-connected layer function. More... | |
arm_status | arm_fully_connected_q7_opt (const q7_t *pV, const q7_t *pM, const uint16_t dim_vec, const uint16_t num_of_rows, const uint16_t bias_shift, const uint16_t out_shift, const q7_t *bias, q7_t *pOut, q15_t *vec_buffer) |
Q7 opt fully-connected layer function. More... | |
arm_status | arm_fully_connected_s16 (const cmsis_nn_context *ctx, const cmsis_nn_fc_params *fc_params, const cmsis_nn_per_tensor_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q15_t *input, const cmsis_nn_dims *filter_dims, const q7_t *kernel, const cmsis_nn_dims *bias_dims, const int64_t *bias, const cmsis_nn_dims *output_dims, q15_t *output) |
Basic s16 Fully Connected function. More... | |
int32_t | arm_fully_connected_s16_get_buffer_size (const cmsis_nn_dims *filter_dims) |
Get the required buffer size for S16 basic fully-connected and matrix multiplication layer function for TF Lite. More... | |
arm_status | arm_fully_connected_s8 (const cmsis_nn_context *ctx, const cmsis_nn_fc_params *fc_params, const cmsis_nn_per_tensor_quant_params *quant_params, const cmsis_nn_dims *input_dims, const q7_t *input, const cmsis_nn_dims *filter_dims, const q7_t *kernel, const cmsis_nn_dims *bias_dims, const int32_t *bias, const cmsis_nn_dims *output_dims, q7_t *output) |
Basic s8 Fully Connected function. More... | |
int32_t | arm_fully_connected_s8_get_buffer_size (const cmsis_nn_dims *filter_dims) |
Get the required buffer size for S8 basic fully-connected and matrix multiplication layer function for TF Lite. More... | |
Collection of fully-connected and matrix multiplication functions.
Fully-connected layer is basically a matrix-vector multiplication with bias. The matrix is the weights and the input/output vectors are the activation values. Supported {weight, activation} precisions include {8-bit, 8-bit}, {16-bit, 16-bit}, and {8-bit, 16-bit}.
Here we have two types of kernel functions. The basic function implements the function using regular GEMV approach. The opt functions operates with weights in interleaved formats.
arm_status arm_fully_connected_mat_q7_vec_q15 | ( | const q15_t * | pV, |
const q7_t * | pM, | ||
const uint16_t | dim_vec, | ||
const uint16_t | num_of_rows, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
const q7_t * | bias, | ||
q15_t * | pOut, | ||
q15_t * | vec_buffer | ||
) |
[in] | pV | pointer to input vector |
[in] | pM | pointer to matrix weights |
[in] | dim_vec | length of the vector |
[in] | num_of_rows | number of rows in weight matrix |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in] | bias | pointer to bias |
[in,out] | pOut | pointer to output vector |
[in,out] | vec_buffer | pointer to buffer space for input |
ARM_MATH_SUCCESS
Buffer size:
vec_buffer size: 0
Q7_Q15 version of the fully connected layer
Weights are in q7_t and Activations are in q15_t
References arm_nn_read_q15x2_ia(), and NN_ROUND.
arm_status arm_fully_connected_mat_q7_vec_q15_opt | ( | const q15_t * | pV, |
const q7_t * | pM, | ||
const uint16_t | dim_vec, | ||
const uint16_t | num_of_rows, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
const q7_t * | bias, | ||
q15_t * | pOut, | ||
q15_t * | vec_buffer | ||
) |
[in] | pV | pointer to input vector |
[in] | pM | pointer to matrix weights |
[in] | dim_vec | length of the vector |
[in] | num_of_rows | number of rows in weight matrix |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in] | bias | pointer to bias |
[in,out] | pOut | pointer to output vector |
[in,out] | vec_buffer | pointer to buffer space for input |
ARM_MATH_SUCCESS
Buffer size:
vec_buffer size: 0
Q7_Q15 version of the fully connected layer
Weights are in q7_t and Activations are in q15_t
Limitation: x4 version requires weight reordering to work
Here we use only one pointer to read 4 rows in the weight matrix. So if the original q7_t matrix looks like this:
| a11 | a12 | a13 | a14 | a15 | a16 | a17 |
| a21 | a22 | a23 | a24 | a25 | a26 | a27 |
| a31 | a32 | a33 | a34 | a35 | a36 | a37 |
| a41 | a42 | a43 | a44 | a45 | a46 | a47 |
| a51 | a52 | a53 | a54 | a55 | a56 | a57 |
| a61 | a62 | a63 | a64 | a65 | a66 | a67 |
We operates on multiple-of-4 rows, so the first four rows becomes
| a11 | a21 | a12 | a22 | a31 | a41 | a32 | a42 |
| a13 | a23 | a14 | a24 | a33 | a43 | a34 | a44 |
| a15 | a25 | a16 | a26 | a35 | a45 | a36 | a46 |
The column left over will be in-order. which is: | a17 | a27 | a37 | a47 |
For the left-over rows, we do 1x1 computation, so the data remains as its original order.
So the stored weight matrix looks like this:
| a11 | a21 | a12 | a22 | a31 | a41 |
| a32 | a42 | a13 | a23 | a14 | a24 |
| a33 | a43 | a34 | a44 | a15 | a25 |
| a16 | a26 | a35 | a45 | a36 | a46 |
| a17 | a27 | a37 | a47 | a51 | a52 |
| a53 | a54 | a55 | a56 | a57 | a61 |
| a62 | a63 | a64 | a65 | a66 | a67 |
References arm_nn_read_q15x2_ia(), arm_nn_read_q7x4_ia(), and NN_ROUND.
arm_status arm_fully_connected_q15 | ( | const q15_t * | pV, |
const q15_t * | pM, | ||
const uint16_t | dim_vec, | ||
const uint16_t | num_of_rows, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
const q15_t * | bias, | ||
q15_t * | pOut, | ||
q15_t * | vec_buffer | ||
) |
Q15 basic fully-connected layer function.
[in] | pV | pointer to input vector |
[in] | pM | pointer to matrix weights |
[in] | dim_vec | length of the vector |
[in] | num_of_rows | number of rows in weight matrix |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in] | bias | pointer to bias |
[in,out] | pOut | pointer to output vector |
[in,out] | vec_buffer | pointer to buffer space for input |
ARM_MATH_SUCCESS
Buffer size:
vec_buffer size: 0
References arm_nn_read_q15x2_ia(), and NN_ROUND.
arm_status arm_fully_connected_q15_opt | ( | const q15_t * | pV, |
const q15_t * | pM, | ||
const uint16_t | dim_vec, | ||
const uint16_t | num_of_rows, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
const q15_t * | bias, | ||
q15_t * | pOut, | ||
q15_t * | vec_buffer | ||
) |
[in] | pV | pointer to input vector |
[in] | pM | pointer to matrix weights |
[in] | dim_vec | length of the vector |
[in] | num_of_rows | number of rows in weight matrix |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in] | bias | pointer to bias |
[in,out] | pOut | pointer to output vector |
[in,out] | vec_buffer | pointer to buffer space for input |
ARM_MATH_SUCCESS
Buffer size:
vec_buffer size: 0
Here we use only one pointer to read 4 rows in the weight matrix. So if the original matrix looks like this:
| a11 | a12 | a13 |
| a21 | a22 | a23 |
| a31 | a32 | a33 |
| a41 | a42 | a43 |
| a51 | a52 | a53 |
| a61 | a62 | a63 |
We operates on multiple-of-4 rows, so the first four rows becomes
| a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
| a13 | a23 | a33 | a43 |
Remaining rows are kept the same original order.
So the stored weight matrix looks like this:
| a11 | a12 | a21 | a22 | a31 | a32 | a41 | a42 |
| a13 | a23 | a33 | a43 | a51 | a52 | a53 | a61 |
| a62 | a63 |
References arm_nn_read_q15x2_ia(), and NN_ROUND.
arm_status arm_fully_connected_q7 | ( | const q7_t * | pV, |
const q7_t * | pM, | ||
const uint16_t | dim_vec, | ||
const uint16_t | num_of_rows, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
const q7_t * | bias, | ||
q7_t * | pOut, | ||
q15_t * | vec_buffer | ||
) |
[in] | pV | pointer to input vector |
[in] | pM | pointer to matrix weights |
[in] | dim_vec | length of the vector |
[in] | num_of_rows | number of rows in weight matrix |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in] | bias | pointer to bias |
[in,out] | pOut | pointer to output vector |
[in,out] | vec_buffer | pointer to buffer space for input |
ARM_MATH_SUCCESS
Buffer size:
vec_buffer size: dim_vec
This basic function is designed to work with regular weight matrix without interleaving.
References arm_nn_read_q15x2_ia(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.
arm_status arm_fully_connected_q7_opt | ( | const q7_t * | pV, |
const q7_t * | pM, | ||
const uint16_t | dim_vec, | ||
const uint16_t | num_of_rows, | ||
const uint16_t | bias_shift, | ||
const uint16_t | out_shift, | ||
const q7_t * | bias, | ||
q7_t * | pOut, | ||
q15_t * | vec_buffer | ||
) |
[in] | pV | pointer to input vector |
[in] | pM | pointer to matrix weights |
[in] | dim_vec | length of the vector |
[in] | num_of_rows | number of rows in weight matrix |
[in] | bias_shift | amount of left-shift for bias |
[in] | out_shift | amount of right-shift for output |
[in] | bias | pointer to bias |
[in,out] | pOut | pointer to output vector |
[in,out] | vec_buffer | pointer to buffer space for input |
ARM_MATH_SUCCESS
Buffer size:
vec_buffer size: dim_vec
This opt function is designed to work with interleaved weight matrix. The vector input is assumed in q7_t format, we call arm_q7_to_q15_no_shift_shuffle function to expand into q15_t format with certain weight re-ordering, refer to the function comments for more details. Here we use only one pointer to read 4 rows in the weight matrix. So if the original q7_t matrix looks like this:
| a11 | a12 | a13 | a14 | a15 | a16 | a17 |
| a21 | a22 | a23 | a24 | a25 | a26 | a27 |
| a31 | a32 | a33 | a34 | a35 | a36 | a37 |
| a41 | a42 | a43 | a44 | a45 | a46 | a47 |
| a51 | a52 | a53 | a54 | a55 | a56 | a57 |
| a61 | a62 | a63 | a64 | a65 | a66 | a67 |
We operates on multiple-of-4 rows, so the first four rows becomes
| a11 | a21 | a13 | a23 | a31 | a41 | a33 | a43 |
| a12 | a22 | a14 | a24 | a32 | a42 | a34 | a44 |
| a15 | a25 | a35 | a45 | a16 | a26 | a36 | a46 |
So within the kernel, we first read the re-ordered vector in as:
| b1 | b3 | and | b2 | b4 |
the four q31_t weights will look like
| a11 | a13 |, | a21 | a23 |, | a31 | a33 |, | a41 | a43 |
| a12 | a14 |, | a22 | a24 |, | a32 | a34 |, | a42 | a44 |
The column left over will be in-order. which is:
| a17 | a27 | a37 | a47 |
For the left-over rows, we do 1x1 computation, so the data remains as its original order.
So the stored weight matrix looks like this:
| a11 | a21 | a13 | a23 | a31 | a41 |
| a33 | a43 | a12 | a22 | a14 | a24 |
| a32 | a42 | a34 | a44 | a15 | a25 |
| a35 | a45 | a16 | a26 | a36 | a46 |
| a17 | a27 | a37 | a47 | a51 | a52 |
| a53 | a54 | a55 | a56 | a57 | a61 |
| a62 | a63 | a64 | a65 | a66 | a67 |
References arm_nn_read_q15x2_ia(), arm_nn_read_q7x4_ia(), arm_q7_to_q15_reordered_no_shift(), and NN_ROUND.
arm_status arm_fully_connected_s16 | ( | const cmsis_nn_context * | ctx, |
const cmsis_nn_fc_params * | fc_params, | ||
const cmsis_nn_per_tensor_quant_params * | quant_params, | ||
const cmsis_nn_dims * | input_dims, | ||
const q15_t * | input_data, | ||
const cmsis_nn_dims * | filter_dims, | ||
const q7_t * | filter_data, | ||
const cmsis_nn_dims * | bias_dims, | ||
const int64_t * | bias_data, | ||
const cmsis_nn_dims * | output_dims, | ||
q15_t * | output_data | ||
) |
[in,out] | ctx | Function context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. |
[in] | fc_params | Fully Connected layer parameters. fc_params->input_offset : 0 fc_params->filter_offset : 0 fc_params->output_offset : 0 |
[in] | quant_params | Per-tensor quantization info. It contains the multiplier and shift values to be applied to the output tensor. |
[in] | input_dims | Input (activation) tensor dimensions. Format: [N, H, W, C_IN] Input dimension is taken as Nx(H * W * C_IN) |
[in] | input_data | Input (activation) data pointer. Data type: int16 |
[in] | filter_dims | Two dimensional filter dimensions. Format: [N, C] N : accumulation depth and equals (H * W * C_IN) from input_dims C : output depth and equals C_OUT in output_dims H & W : Not used |
[in] | filter_data | Filter data pointer. Data type: int8 |
[in] | bias_dims | Bias tensor dimensions. Format: [C_OUT] N, H, W : Not used |
[in] | bias_data | Bias data pointer. Data type: int64 |
[in] | output_dims | Output tensor dimensions. Format: [N, C_OUT] N : Batches C_OUT : Output depth H & W : Not used. |
[in,out] | output_data | Output data pointer. Data type: int16 |
ARM_MATH_SUCCESS
References cmsis_nn_fc_params::activation, arm_nn_vec_mat_mult_t_s16(), cmsis_nn_dims::c, cmsis_nn_fc_params::filter_offset, cmsis_nn_activation::max, cmsis_nn_activation::min, cmsis_nn_per_tensor_quant_params::multiplier, cmsis_nn_dims::n, REDUCE_MULTIPLIER, and cmsis_nn_per_tensor_quant_params::shift.
int32_t arm_fully_connected_s16_get_buffer_size | ( | const cmsis_nn_dims * | filter_dims | ) |
[in] | filter_dims | dimension of filter |
arm_status arm_fully_connected_s8 | ( | const cmsis_nn_context * | ctx, |
const cmsis_nn_fc_params * | fc_params, | ||
const cmsis_nn_per_tensor_quant_params * | quant_params, | ||
const cmsis_nn_dims * | input_dims, | ||
const q7_t * | input_data, | ||
const cmsis_nn_dims * | filter_dims, | ||
const q7_t * | filter_data, | ||
const cmsis_nn_dims * | bias_dims, | ||
const int32_t * | bias_data, | ||
const cmsis_nn_dims * | output_dims, | ||
q7_t * | output_data | ||
) |
[in,out] | ctx | Function context (e.g. temporary buffer). Check the function definition file to see if an additional buffer is required. Optional function {API}_get_buffer_size() provides the buffer size if an additional buffer is required. |
[in] | fc_params | Fully Connected layer parameters. Range of fc_params->input_offset : [-127, 128] fc_params->filter_offset : 0 Range of fc_params->output_offset : [-128, 127] |
[in] | quant_params | Per-tensor quantization info. It contains the multiplier and shift values to be applied to the output tensor. |
[in] | input_dims | Input (activation) tensor dimensions. Format: [N, H, W, C_IN] Input dimension is taken as Nx(H * W * C_IN) |
[in] | input_data | Input (activation) data pointer. Data type: int8 |
[in] | filter_dims | Two dimensional filter dimensions. Format: [N, C] N : accumulation depth and equals (H * W * C_IN) from input_dims C : output depth and equals C_OUT in output_dims H & W : Not used |
[in] | filter_data | Filter data pointer. Data type: int8 |
[in] | bias_dims | Bias tensor dimensions. Format: [C_OUT] N, H, W : Not used |
[in] | bias_data | Bias data pointer. Data type: int32 |
[in] | output_dims | Output tensor dimensions. Format: [N, C_OUT] N : Batches C_OUT : Output depth H & W : Not used. |
[in,out] | output_data | Output data pointer. Data type: int8 |
ARM_MATH_SUCCESS
References cmsis_nn_fc_params::activation, arm_nn_vec_mat_mult_t_s8(), cmsis_nn_dims::c, cmsis_nn_fc_params::filter_offset, cmsis_nn_fc_params::input_offset, cmsis_nn_activation::max, cmsis_nn_activation::min, cmsis_nn_per_tensor_quant_params::multiplier, cmsis_nn_dims::n, cmsis_nn_fc_params::output_offset, and cmsis_nn_per_tensor_quant_params::shift.
int32_t arm_fully_connected_s8_get_buffer_size | ( | const cmsis_nn_dims * | filter_dims | ) |
[in] | filter_dims | dimension of filter |