24.02
|
Go to the documentation of this file.
32 const std::vector<TensorShape>& inputShapes =
39 unsigned int filterWidth = filterShape[dataLayoutIndex.
GetWidthIndex()];
40 unsigned int filterHeight = filterShape[dataLayoutIndex.
GetHeightIndex()];
41 unsigned int outChannels = filterShape[0];
43 fn(
"OutputChannels",std::to_string(outChannels));
44 fn(
"FilterWidth",std::to_string(filterWidth));
45 fn(
"FilterHeight",std::to_string(filterHeight));
60 auto layer = CloneBase<Convolution2dLayer>(graph,
m_Param,
GetName());
61 return std::move(layer);
78 unsigned int inWidth = inputShape[dataLayoutIndex.
GetWidthIndex()];
79 unsigned int inHeight = inputShape[dataLayoutIndex.
GetHeightIndex()];
80 unsigned int inBatchSize = inputShape[0];
82 unsigned int filterWidth = filterShape[dataLayoutIndex.
GetWidthIndex()];
83 unsigned int dilatedFilterWidth = filterWidth + (
m_Param.
m_DilationX - 1) * (filterWidth - 1);
87 unsigned int filterHeight = filterShape[dataLayoutIndex.
GetHeightIndex()];
88 unsigned int dilatedFilterHeight = filterHeight + (
m_Param.
m_DilationY - 1) * (filterHeight - 1);
92 unsigned int outChannels = filterShape[0];
93 unsigned int outBatchSize = inBatchSize;
96 TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
97 TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
99 return std::vector<TensorShape>({ tensorShape });
111 "Convolution2dLayer: Weights should be connected to input slot 1.");
#define ARMNN_ASSERT(COND)
uint32_t m_PadTop
Padding top value in the height dimension.
const TensorInfo & GetTensorInfo() const override
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Convolution2dLayer.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
#define ARMNN_ASSERT_MSG(COND, MSG)
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_DilationY
Dilation along y axis.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const Convolution2dDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
unsigned int GetHeightIndex() const
This layer represents a convolution 2d operation.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >> ImmutableConstantTensors
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
Convolution2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
uint32_t GetNumInputs() const
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
#define ARMNN_SCOPED_PROFILING_EVENT(backendId, name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_PadBottom
Padding bottom value in the height dimension.
unsigned int GetWidthIndex() const
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Convolution2dLayer(const Convolution2dDescriptor ¶m, const char *name)
Constructor to create a Convolution2dLayer.
uint32_t m_PadRight
Padding right value in the width dimension.
A Convolution2dDescriptor for the Convolution2dLayer.
uint32_t GetNumInputs(bool biasEnabled)
const TensorShape & GetShape() const
uint32_t m_DilationX
Dilation along x axis.
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Convolution2d type.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
Copyright (c) 2021 ARM Limited and Contributors.
Convolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.