ArmNN
 24.02
Convolution3dLayer.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2021-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "Convolution3dLayer.hpp"
7 #include "LayerCloneBase.hpp"
8 
10 
12 
13 using namespace armnnUtils;
14 
15 namespace armnn
16 {
17 
19  : LayerWithParameters(param.GetNumInputs(), 1, LayerType::Convolution3d, param, name)
20 {
21 }
22 
24 {
25  const std::vector<TensorShape>& inputShapes =
26  {
29  };
30 
31  // Conv3d Filter Layout: [D,H,W,I,O]
32  const TensorShape filterShape = inputShapes[1];
33  unsigned int filterDepth = filterShape[0];
34  unsigned int filterHeight = filterShape[1];
35  unsigned int filterWidth = filterShape[2];
36  unsigned int inChannels = filterShape[3];
37  unsigned int outChannels = filterShape[4];
38 
39  fn("FilterDepth",std::to_string(filterDepth));
40  fn("FilterHeight",std::to_string(filterHeight));
41  fn("FilterWidth",std::to_string(filterWidth));
42  fn("InputChannels",std::to_string(inChannels));
43  fn("OutputChannels",std::to_string(outChannels));
44 
46 }
47 
48 std::unique_ptr<IWorkload> Convolution3dLayer::CreateWorkload(const IWorkloadFactory& factory) const
49 {
51  SetAdditionalInfo(descriptor);
52 
53  return factory.CreateWorkload(LayerType::Convolution3d, descriptor, PrepInfoAndDesc(descriptor));
54 }
55 
57 {
58  auto layer = CloneBase<Convolution3dLayer>(graph, m_Param, GetName());
59  return std::move(layer);
60 }
61 
62 std::vector<TensorShape> Convolution3dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
63 {
64  ARMNN_ASSERT(inputShapes.size() == 2);
65  const TensorShape& inputShape = inputShapes[0];
66  const TensorShape& filterShape = inputShapes[1];
67 
68  ARMNN_ASSERT_MSG(inputShape.GetNumDimensions() == 5, "Convolutions will always have 5D input.");
69 
73 
74  DataLayoutIndexed dataLayoutIndex(m_Param.m_DataLayout);
75 
76  unsigned int inWidth = inputShape[dataLayoutIndex.GetWidthIndex()];
77  unsigned int inHeight = inputShape[dataLayoutIndex.GetHeightIndex()];
78  unsigned int inDepth = inputShape[dataLayoutIndex.GetDepthIndex()];
79  unsigned int inBatchSize = inputShape[0];
80 
81  // Conv3d Filter Layout: [D,H,W,I,O]
82  unsigned int filterDepth = filterShape[0];
83  unsigned int dilatedFilterDepth = filterDepth + (m_Param.m_DilationZ - 1) * (filterDepth - 1);
84  unsigned int readDepth = (inDepth + m_Param.m_PadFront + m_Param.m_PadBack) - dilatedFilterDepth;
85  unsigned int outDepth = 1 + (readDepth / m_Param.m_StrideZ);
86 
87  unsigned int filterHeight = filterShape[1];
88  unsigned int dilatedFilterHeight = filterHeight + (m_Param.m_DilationY - 1) * (filterHeight - 1);
89  unsigned int readHeight = (inHeight + m_Param.m_PadTop + m_Param.m_PadBottom) - dilatedFilterHeight;
90  unsigned int outHeight = 1 + (readHeight / m_Param.m_StrideY);
91 
92  unsigned int filterWidth = filterShape[2];
93  unsigned int dilatedFilterWidth = filterWidth + (m_Param.m_DilationX - 1) * (filterWidth - 1);
94  unsigned int readWidth = (inWidth + m_Param.m_PadLeft + m_Param.m_PadRight) - dilatedFilterWidth;
95  unsigned int outWidth = 1 + (readWidth / m_Param.m_StrideX);
96 
97  unsigned int outChannels = filterShape[4];
98  unsigned int outBatchSize = inBatchSize;
99 
101  TensorShape( { outBatchSize, outDepth, outHeight, outWidth, outChannels } ) :
102  TensorShape( { outBatchSize, outChannels, outDepth, outHeight, outWidth });
103 
104  return std::vector<TensorShape>({ tensorShape });
105 }
106 
108 {
110 
111  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
112 
114 
115  ARMNN_ASSERT_MSG(GetInputSlot(1).GetConnection(),
116  "Convolution3dLayer: Weights should be connected to input slot 1.");
117 
118  auto inferredShapes = InferOutputShapes({
121 
122  ARMNN_ASSERT(inferredShapes.size() == 1);
123 
124  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "Convolution3dLayer");
125 }
126 
128 {
129  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
130 }
131 
132 } // namespace armnn
ARMNN_ASSERT
#define ARMNN_ASSERT(COND)
Definition: Assert.hpp:14
armnn::Convolution3dLayer::InferOutputShapes
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
Definition: Convolution3dLayer.cpp:62
armnn::Convolution3dDescriptor::GetNumInputs
uint32_t GetNumInputs() const
Get the number of views/inputs.
Definition: Descriptors.cpp:464
armnn::OutputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:92
armnn::LayerWithParameters::SerializeLayerParameters
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Definition: LayerWithParameters.hpp:23
armnn::Convolution3dDescriptor::m_PadFront
uint32_t m_PadFront
Padding front value in the depth dimension.
Definition: Descriptors.hpp:637
CHECK_LOCATION
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
armnnUtils::DataLayoutIndexed
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
Definition: DataLayoutIndexed.hpp:17
armnn::Layer::ValidateAndCopyShape
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:435
armnn::Layer::GetOutputSlot
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
armnn::Convolution3dDescriptor::m_PadTop
uint32_t m_PadTop
Padding top value in the height dimension.
Definition: Descriptors.hpp:633
armnn::Convolution3dDescriptor::m_DilationX
uint32_t m_DilationX
Dilation along x axis.
Definition: Descriptors.hpp:647
armnn::Convolution3dDescriptor::m_PadBottom
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Definition: Descriptors.hpp:635
Convolution3dLayer.hpp
armnn::IStrategy
Definition: IStrategy.hpp:16
ARMNN_ASSERT_MSG
#define ARMNN_ASSERT_MSG(COND, MSG)
Definition: Assert.hpp:15
armnn::Layer::GetInputSlot
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
armnn::LayerWithParameters< Convolution3dDescriptor >::GetParameters
const Convolution3dDescriptor & GetParameters() const override
Definition: LayerWithParameters.hpp:19
armnn::LayerWithParameters
Definition: LayerWithParameters.hpp:14
armnn::Layer::GetName
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
armnn::Convolution3dQueueDescriptor
Definition: WorkloadData.hpp:216
armnnUtils::DataLayoutIndexed::GetHeightIndex
unsigned int GetHeightIndex() const
Definition: DataLayoutIndexed.hpp:24
armnn::Convolution3dLayer::CreateWorkload
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Convolution3d type.
Definition: Convolution3dLayer.cpp:48
armnn::DataLayout::NDHWC
@ NDHWC
armnn::InputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:592
armnn::TensorShape
Definition: Tensor.hpp:20
armnn::Convolution3dDescriptor::m_PadRight
uint32_t m_PadRight
Padding right value in the width dimension.
Definition: Descriptors.hpp:631
armnn::Convolution3dLayer::Clone
Convolution3dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Definition: Convolution3dLayer.cpp:56
armnn::LayerWithParameters< Convolution3dDescriptor >::m_Param
Convolution3dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Definition: LayerWithParameters.hpp:52
armnn::Convolution3dLayer::SerializeLayerParameters
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
Definition: Convolution3dLayer.cpp:23
armnn::TensorShape::GetNumDimensions
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
armnn::LayerWithParameters< Convolution3dDescriptor >::PrepInfoAndDesc
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
Definition: LayerWithParameters.hpp:44
armnn::Convolution3dDescriptor::m_DilationZ
uint32_t m_DilationZ
Dilation along z axis.
Definition: Descriptors.hpp:651
armnn::IWorkloadFactory
Definition: WorkloadFactory.hpp:22
armnnUtils
Definition: CompatibleTypes.hpp:10
armnn::Convolution3dDescriptor::m_PadLeft
uint32_t m_PadLeft
Padding left value in the width dimension.
Definition: Descriptors.hpp:629
armnn::ParameterStringifyFunction
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
Definition: SerializeLayerParameters.hpp:14
armnn::Layer::VerifyShapeInferenceType
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:504
armnn::Convolution3dDescriptor::m_StrideY
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
Definition: Descriptors.hpp:643
armnn::Layer::SetAdditionalInfo
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:287
armnn::Convolution3dDescriptor::m_StrideX
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Definition: Descriptors.hpp:641
armnn::Convolution3dDescriptor
A Convolution3dDescriptor for the Convolution3dLayer.
Definition: Descriptors.hpp:588
armnnUtils::DataLayoutIndexed::GetWidthIndex
unsigned int GetWidthIndex() const
Definition: DataLayoutIndexed.hpp:25
armnn::GetNumInputs
uint32_t GetNumInputs(bool biasEnabled)
Definition: Descriptors.cpp:454
TensorHandle.hpp
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
armnn::Convolution3dDescriptor::m_PadBack
uint32_t m_PadBack
Padding back value in the depth dimension.
Definition: Descriptors.hpp:639
armnn::Convolution3dLayer
This layer represents a convolution 3d operation.
Definition: Convolution3dLayer.hpp:16
armnn::Convolution3dDescriptor::m_DilationY
uint32_t m_DilationY
Dilation along y axis.
Definition: Descriptors.hpp:649
armnn
Copyright (c) 2021 ARM Limited and Contributors.
Definition: 01_00_quick_start.dox:6
armnn::Convolution3dDescriptor::m_StrideZ
uint32_t m_StrideZ
Stride value when proceeding through input for the depth dimension.
Definition: Descriptors.hpp:645
armnn::Layer::VerifyLayerConnections
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:391
armnn::Convolution3dDescriptor::m_DataLayout
DataLayout m_DataLayout
The data layout to be used (NDHWC, NCDHW).
Definition: Descriptors.hpp:655
armnn::Convolution3dLayer::ValidateTensorShapesFromInputs
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Convolution3dLayer.
Definition: Convolution3dLayer.cpp:107
armnn::Convolution3dLayer::ExecuteStrategy
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
Definition: Convolution3dLayer.cpp:127
armnn::LayerType::Convolution3d
@ Convolution3d
armnn::Convolution3dLayer::Convolution3dLayer
Convolution3dLayer(const Convolution3dDescriptor &param, const char *name)
Constructor to create a Convolution3dLayer.
Definition: Convolution3dLayer.cpp:18
armnn::Layer::m_ShapeInferenceMethod
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
armnn::LayerType
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition: Types.hpp:491
DataLayoutIndexed.hpp
armnn::Graph
Definition: Graph.hpp:30
armnn::IWorkloadFactory::CreateWorkload
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
armnn::IStrategy::ExecuteStrategy
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
LayerCloneBase.hpp
armnnUtils::DataLayoutIndexed::GetDepthIndex
unsigned int GetDepthIndex() const
Definition: DataLayoutIndexed.hpp:26