24.02
|
Go to the documentation of this file.
31 const std::vector<TensorShape>& inputShapes =
37 unsigned int inputChannels = filterShape[1];
38 unsigned int filterWidth = filterShape[3];
39 unsigned int filterHeight = filterShape[2];
40 unsigned int depthMultiplier = filterShape[0];
42 fn(
"FilterWidth",std::to_string(filterWidth));
43 fn(
"FilterHeight",std::to_string(filterHeight));
44 fn(
"DepthMultiplier",std::to_string(depthMultiplier));
45 fn(
"InputChannels",std::to_string(inputChannels));
60 auto layer = CloneBase<DepthwiseConvolution2dLayer>(graph,
m_Param,
GetName());
61 return std::move(layer);
64 std::vector<TensorShape>
78 unsigned int inputBatchSize = inputShape[0];
79 unsigned int inputHeight = inputShape[dataLayoutIndex.
GetHeightIndex()];
80 unsigned int inputWidth = inputShape[dataLayoutIndex.
GetWidthIndex()];
85 unsigned int filterHeight = filterShape[1];
86 unsigned int dilatedFilterHeight = filterHeight + (
m_Param.
m_DilationY - 1) * (filterHeight - 1);
90 unsigned int filterWidth = filterShape[2];
91 unsigned int dilatedFilterWidth = filterWidth + (
m_Param.
m_DilationX - 1) * (filterWidth - 1);
95 unsigned int outputChannels = filterShape[3];
96 unsigned int outputBatchSize = inputBatchSize;
99 TensorShape{ outputBatchSize, outputHeight, outputWidth, outputChannels } :
100 TensorShape{ outputBatchSize, outputChannels, outputHeight, outputWidth };
102 return std::vector<TensorShape>{ tensorShape };
114 "DepthwiseConvolution2dLayer: Weights data should not be null.");
#define ARMNN_ASSERT(COND)
const TensorInfo & GetTensorInfo() const override
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
This layer represents a depthwise convolution 2d operation.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the DepthwiseConvolution2d type.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
uint32_t m_PadLeft
Padding left value in the width dimension.
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
#define ARMNN_ASSERT_MSG(COND, MSG)
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const DepthwiseConvolution2dDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
unsigned int GetHeightIndex() const
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >> ImmutableConstantTensors
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors() const
DepthwiseConvolution2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
uint32_t m_DilationY
Dilation factor value for height dimension.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
DepthwiseConvolution2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of DepthwiseConvolution2dLayer.
uint32_t m_PadRight
Padding right value in the width dimension.
std::function< void(const std::string &name, const std::string &value)> ParameterStringifyFunction
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values connected to the layer.
unsigned int GetWidthIndex() const
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Depthwise Convolution 2D layer workload data.
uint32_t GetNumInputs(bool biasEnabled)
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
const TensorShape & GetShape() const
Copyright (c) 2021 ARM Limited and Contributors.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
A DepthwiseConvolution2dDescriptor for the DepthwiseConvolution2dLayer.
uint32_t m_DilationX
Dilation factor value for width dimension.
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
void SerializeLayerParameters(ParameterStringifyFunction &fn) const override
Helper to serialize the layer parameters to string.
DepthwiseConvolution2dLayer(const DepthwiseConvolution2dDescriptor ¶m, const char *name)
Constructor to create a DepthwiseConvolution2dLayer.
uint32_t GetNumInputs() const
Get the number of views/inputs.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
uint32_t m_PadTop
Padding top value in the height dimension.