24.02
|
Go to the documentation of this file.
45 std::vector<unsigned int> dimensionSizes(inputNumDimensions + 1, 0);
46 for (
unsigned int i = 0; i < axis; ++i)
48 dimensionSizes[i] = inputShape[i];
53 for (
unsigned int i = axis + 1; i < inputNumDimensions + 1; ++i)
55 dimensionSizes[i] = inputShape[i-1];
60 return std::vector<TensorShape>({ targetShape });
66 ConditionalThrowIfNotEqual<LayerValidationException>(
67 "StackLayer: Num Input Slots must match Num Inputs.",
78 std::vector<TensorShape> inputShapes;
86 "] does not match defined input shape");
88 inputShapes.push_back(inputShape);
#define ARMNN_ASSERT(COND)
const TensorInfo & GetTensorInfo() const override
StackLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
A StackDescriptor for the StackLayer.
This layer represents a stack operation.
void Stack(const StackQueueDescriptor &data, std::vector< std::unique_ptr< Decoder< float >>> &inputs, Encoder< float > &output, const TensorInfo &inputInfo, const TensorInfo &outputInfo)
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const StackDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
uint32_t m_NumInputs
Number of input tensors.
StackDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
uint32_t m_Axis
0-based axis along which to stack the input tensors.
StackLayer(const StackDescriptor ¶m, const char *name)
Constructor to create a StackLayer.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Stack type.
TensorShape m_InputShape
Required shape of all input tensors.
unsigned int GetNumInputSlots() const override
Returns the number of connectable input slots.
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
const TensorShape & GetShape() const
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
void IgnoreUnused(Ts &&...)
Copyright (c) 2021 ARM Limited and Contributors.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of StackLayer.
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0