ArmNN
 24.02
Pooling2dLayer Class Reference

This layer represents a pooling 2d operation. More...

#include <Pooling2dLayer.hpp>

Inheritance diagram for Pooling2dLayer:
[legend]
Collaboration diagram for Pooling2dLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the Pooling2d type. More...
 
Pooling2dLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer. More...
 
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of Pooling2dLayer. More...
 
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties. More...
 
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer. More...
 
- Public Member Functions inherited from LayerWithParameters< Pooling2dDescriptor >
const Pooling2dDescriptorGetParameters () const override
 If the layer has a descriptor return it. More...
 
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company). More...
 
- Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
 
const std::string & GetNameStr () const
 
const OutputHandlerGetOutputHandler (unsigned int i=0) const
 
OutputHandlerGetOutputHandler (unsigned int i=0)
 
ShapeInferenceMethod GetShapeInferenceMethod () const
 
bool GetAllowExpandedDims () const
 
const std::vector< InputSlot > & GetInputSlots () const
 
const std::vector< OutputSlot > & GetOutputSlots () const
 
std::vector< InputSlot >::iterator BeginInputSlots ()
 
std::vector< InputSlot >::iterator EndInputSlots ()
 
std::vector< OutputSlot >::iterator BeginOutputSlots ()
 
std::vector< OutputSlot >::iterator EndOutputSlots ()
 
bool IsOutputUnconnected ()
 
void ResetPriority () const
 
LayerPriority GetPriority () const
 
LayerType GetType () const override
 Returns the armnn::LayerType of this layer. More...
 
DataType GetDataType () const
 
const BackendIdGetBackendId () const
 
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer. More...
 
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
 
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
 
virtual void ReleaseConstantData ()
 
template<typename Op >
void OperateOnConstantTensors (Op op)
 
const char * GetName () const override
 Returns the name of the layer. More...
 
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots. More...
 
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots. More...
 
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index. More...
 
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index. More...
 
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index. More...
 
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index. More...
 
void SetGuid (LayerGuid guid)
 
LayerGuid GetGuid () const final
 Returns the unique id of the layer. More...
 
void AddRelatedLayerName (const std::string layerName)
 
const std::list< std::string > & GetRelatedLayerNames ()
 
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
 
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer. More...
 
Optional< BackendIdGetBackendHint () const
 
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
 
void SetAllowExpandedDims (bool allowExpandedDims)
 
template<typename T >
std::shared_ptr< T > GetAdditionalInformation () const
 
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)
 
virtual const BaseDescriptorGetParameters () const override
 If the layer has a descriptor return it. More...
 

Protected Member Functions

 Pooling2dLayer (const Pooling2dDescriptor &param, const char *name)
 Constructor to create a Pooling2dLayer. More...
 
 ~Pooling2dLayer ()=default
 Default destructor. More...
 
- Protected Member Functions inherited from LayerWithParameters< Pooling2dDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Pooling2dDescriptor &param, const char *name)
 
 ~LayerWithParameters ()=default
 
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *Layer::CreateWorkload. More...
 
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer. More...
 
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
 
- Protected Member Functions inherited from Layer
virtual ~Layer ()=default
 
template<typename QueueDescriptor >
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
 
template<typename QueueDescriptor >
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
 
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
 
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
 
template<typename QueueDescriptor >
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *Layer::CreateWorkload. More...
 
template<typename LayerType , typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
 
virtual ConstantTensors GetConstantTensorsByRef () override final
 
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
 
void SetAdditionalInfo (QueueDescriptor &descriptor) const
 
- Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle. More...
 

Additional Inherited Members

- Public Types inherited from LayerWithParameters< Pooling2dDescriptor >
using DescriptorType = Pooling2dDescriptor
 
- Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector< std::reference_wrapper< std::shared_ptr< ConstTensorHandle > >>
 
using ImmutableConstantTensors = std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > >>
 
- Protected Attributes inherited from LayerWithParameters< Pooling2dDescriptor >
Pooling2dDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.). More...
 
- Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
 
std::vector< OutputHandlerm_OutputHandlers
 
ShapeInferenceMethod m_ShapeInferenceMethod
 

Detailed Description

This layer represents a pooling 2d operation.

Definition at line 13 of file Pooling2dLayer.hpp.

Constructor & Destructor Documentation

◆ Pooling2dLayer()

Pooling2dLayer ( const Pooling2dDescriptor param,
const char *  name 
)
protected

Constructor to create a Pooling2dLayer.

Parameters
[in]paramPooling2dDescriptor to configure the pooling2d operation.
[in]nameOptional name for the layer.

Definition at line 22 of file Pooling2dLayer.cpp.

23  : LayerWithParameters(1, 1, LayerType::Pooling2d, param, name)
24 {
25 }

References armnn::Pooling2d().

◆ ~Pooling2dLayer()

~Pooling2dLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

Pooling2dLayer * Clone ( Graph graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 35 of file Pooling2dLayer.cpp.

36 {
37  return CloneBase<Pooling2dLayer>(graph, m_Param, GetName());
38 }

References Layer::GetName(), and LayerWithParameters< Pooling2dDescriptor >::m_Param.

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory factory) const
overridevirtual

Makes a workload for the Pooling2d type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 27 of file Pooling2dLayer.cpp.

28 {
29  Pooling2dQueueDescriptor descriptor;
30  SetAdditionalInfo(descriptor);
31 
32  return factory.CreateWorkload(LayerType::Pooling2d, descriptor, PrepInfoAndDesc(descriptor));
33 }

References IWorkloadFactory::CreateWorkload(), armnn::Pooling2d, LayerWithParameters< Pooling2dDescriptor >::PrepInfoAndDesc(), and Layer::SetAdditionalInfo().

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from Layer.

Definition at line 120 of file Pooling2dLayer.cpp.

121 {
122  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
123 }

References IStrategy::ExecuteStrategy(), Layer::GetName(), and LayerWithParameters< Pooling2dDescriptor >::GetParameters().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > &  inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 40 of file Pooling2dLayer.cpp.

41 {
42  ARMNN_ASSERT(inputShapes.size() == 1);
43  const TensorShape& inputShape = inputShapes[0];
44  const DataLayoutIndexed dimensionIndices = m_Param.m_DataLayout;
45 
46  // If we support multiple batch dimensions in the future, then this assert will need to change.
47  ARMNN_ASSERT_MSG(inputShape.GetNumDimensions() == 4, "Pooling2dLayer will always have 4D input.");
48 
49  unsigned int inWidth = inputShape[dimensionIndices.GetWidthIndex()];
50  unsigned int inHeight = inputShape[dimensionIndices.GetHeightIndex()];
51  unsigned int inChannels = inputShape[dimensionIndices.GetChannelsIndex()];
52  unsigned int inBatchSize = inputShape[0];
53 
54  bool isGlobalPooling = (m_Param.m_StrideX==0 && m_Param.m_StrideY==0);
55  unsigned int outWidth = 1;
56  unsigned int outHeight = 1;
57  if (!isGlobalPooling)
58  {
60  "Stride can only be zero when performing global pooling");
61 
62  auto CalcSize = [](auto inSize, auto lowPad, auto highPad, auto poolSize, auto stride, auto outputShapeRounding)
63  {
64  unsigned int readSize = inSize + lowPad + highPad - poolSize;
65  float div = static_cast<float>(readSize) / static_cast<float>(stride);
66 
67  unsigned int size = 0;
68  switch (outputShapeRounding)
69  {
71  size = static_cast<unsigned int>(ceil(div)) + 1;
72  break;
73  case OutputShapeRounding ::Floor:
74  size = static_cast<unsigned int>(floor(div)) + 1;
75  break;
76  default:
77  ARMNN_ASSERT_MSG(false, "Unsupported Output Shape Rounding");
78  }
79 
80  // MakeS sure that border operations will start from inside the input and not the padded area.
81  // This is what CL does...
82  if ((size - 1)*stride >= inSize + lowPad)
83  {
84  --size;
85  }
86 
87  return size;
88  };
89 
90  outWidth = CalcSize(inWidth, m_Param.m_PadLeft, m_Param.m_PadRight, m_Param.m_PoolWidth, m_Param.m_StrideX,
92  outHeight = CalcSize(inHeight, m_Param.m_PadTop, m_Param.m_PadBottom, m_Param.m_PoolHeight, m_Param.m_StrideY,
94  }
95  unsigned int outChannels = inChannels;
96  unsigned int outBatchSize = inBatchSize;
97 
99  TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
100  TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
101 
102  return std::vector<TensorShape>({ tensorShape });
103 }

References ARMNN_ASSERT, ARMNN_ASSERT_MSG, armnn::Ceiling, DataLayoutIndexed::GetChannelsIndex(), DataLayoutIndexed::GetHeightIndex(), TensorShape::GetNumDimensions(), DataLayoutIndexed::GetWidthIndex(), Pooling2dDescriptor::m_DataLayout, Pooling2dDescriptor::m_OutputShapeRounding, Pooling2dDescriptor::m_PadBottom, Pooling2dDescriptor::m_PadLeft, Pooling2dDescriptor::m_PadRight, Pooling2dDescriptor::m_PadTop, LayerWithParameters< Pooling2dDescriptor >::m_Param, Pooling2dDescriptor::m_PoolHeight, Pooling2dDescriptor::m_PoolWidth, Pooling2dDescriptor::m_StrideX, Pooling2dDescriptor::m_StrideY, and armnn::NHWC.

Referenced by Pooling2dLayer::ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of Pooling2dLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 105 of file Pooling2dLayer.cpp.

106 {
108 
109  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
110 
112 
113  auto inferredShapes = InferOutputShapes({ GetInputSlot(0).GetTensorInfo().GetShape() });
114 
115  ARMNN_ASSERT(inferredShapes.size() == 1);
116 
117  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "Pooling2dLayer");
118 }

References ARMNN_ASSERT, CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), Pooling2dLayer::InferOutputShapes(), Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files:
ARMNN_ASSERT
#define ARMNN_ASSERT(COND)
Definition: Assert.hpp:14
armnn::OutputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:92
armnn::Pooling2dDescriptor::m_PoolHeight
uint32_t m_PoolHeight
Pooling height value.
Definition: Descriptors.hpp:417
armnn::DataLayout::NHWC
@ NHWC
armnn::Pooling2dDescriptor::m_StrideY
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
Definition: Descriptors.hpp:421
CHECK_LOCATION
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
armnnUtils::DataLayoutIndexed
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
Definition: DataLayoutIndexed.hpp:17
armnn::Layer::ValidateAndCopyShape
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:435
armnn::Layer::GetOutputSlot
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
armnn::Pooling2dDescriptor::m_PadTop
uint32_t m_PadTop
Padding top value in the height dimension.
Definition: Descriptors.hpp:411
armnn::Pooling2dDescriptor::m_PoolWidth
uint32_t m_PoolWidth
Pooling width value.
Definition: Descriptors.hpp:415
ARMNN_ASSERT_MSG
#define ARMNN_ASSERT_MSG(COND, MSG)
Definition: Assert.hpp:15
armnn::Layer::GetInputSlot
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
armnn::LayerWithParameters< Pooling2dDescriptor >::GetParameters
const Pooling2dDescriptor & GetParameters() const override
Definition: LayerWithParameters.hpp:19
armnn::ceil
Definition: Ceil.hpp:13
armnn::Layer::GetName
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
armnnUtils::DataLayoutIndexed::GetHeightIndex
unsigned int GetHeightIndex() const
Definition: DataLayoutIndexed.hpp:24
armnn::InputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:592
armnn::TensorShape
Definition: Tensor.hpp:20
armnn::LayerWithParameters< Pooling2dDescriptor >::m_Param
Pooling2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Definition: LayerWithParameters.hpp:52
armnn::Pooling2dDescriptor::m_DataLayout
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
Definition: Descriptors.hpp:427
armnn::TensorShape::GetNumDimensions
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
armnn::Pooling2dDescriptor::m_PadBottom
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Definition: Descriptors.hpp:413
armnn::Pooling2dDescriptor::m_PadRight
uint32_t m_PadRight
Padding right value in the width dimension.
Definition: Descriptors.hpp:409
armnn::LayerWithParameters< Pooling2dDescriptor >::PrepInfoAndDesc
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
Definition: LayerWithParameters.hpp:44
armnn::Layer::VerifyShapeInferenceType
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:504
armnn::Layer::SetAdditionalInfo
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:287
armnnUtils::DataLayoutIndexed::GetWidthIndex
unsigned int GetWidthIndex() const
Definition: DataLayoutIndexed.hpp:25
armnn::Pooling2dDescriptor::m_PadLeft
uint32_t m_PadLeft
Padding left value in the width dimension.
Definition: Descriptors.hpp:407
armnn::LayerType::Pooling2d
@ Pooling2d
armnn::Pooling2dDescriptor::m_StrideX
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Definition: Descriptors.hpp:419
armnn::Pooling2dQueueDescriptor
Definition: WorkloadData.hpp:197
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
armnnUtils::DataLayoutIndexed::GetChannelsIndex
unsigned int GetChannelsIndex() const
Definition: DataLayoutIndexed.hpp:23
armnn::Layer::VerifyLayerConnections
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:391
armnn::Pooling2dDescriptor::m_OutputShapeRounding
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
Definition: Descriptors.hpp:423
armnn::Pooling2dLayer::InferOutputShapes
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
Definition: Pooling2dLayer.cpp:40
armnn::OutputShapeRounding::Ceiling
@ Ceiling
armnn::LayerWithParameters< Pooling2dDescriptor >::LayerWithParameters
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Pooling2dDescriptor &param, const char *name)
Definition: LayerWithParameters.hpp:30
armnn::Layer::m_ShapeInferenceMethod
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
armnn::IWorkloadFactory::CreateWorkload
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
armnn::IStrategy::ExecuteStrategy
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0