ArmNN
 24.02
Pooling2dLayer.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2017-2023 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "Pooling2dLayer.hpp"
7 
8 #include "LayerCloneBase.hpp"
9 
10 #include <armnn/TypesUtils.hpp>
11 
13 
16 
17 using namespace armnnUtils;
18 
19 namespace armnn
20 {
21 
22 Pooling2dLayer::Pooling2dLayer(const Pooling2dDescriptor& param, const char* name)
23  : LayerWithParameters(1, 1, LayerType::Pooling2d, param, name)
24 {
25 }
26 
27 std::unique_ptr<IWorkload> Pooling2dLayer::CreateWorkload(const IWorkloadFactory& factory) const
28 {
29  Pooling2dQueueDescriptor descriptor;
30  SetAdditionalInfo(descriptor);
31 
32  return factory.CreateWorkload(LayerType::Pooling2d, descriptor, PrepInfoAndDesc(descriptor));
33 }
34 
36 {
37  return CloneBase<Pooling2dLayer>(graph, m_Param, GetName());
38 }
39 
40 std::vector<TensorShape> Pooling2dLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
41 {
42  ARMNN_ASSERT(inputShapes.size() == 1);
43  const TensorShape& inputShape = inputShapes[0];
44  const DataLayoutIndexed dimensionIndices = m_Param.m_DataLayout;
45 
46  // If we support multiple batch dimensions in the future, then this assert will need to change.
47  ARMNN_ASSERT_MSG(inputShape.GetNumDimensions() == 4, "Pooling2dLayer will always have 4D input.");
48 
49  unsigned int inWidth = inputShape[dimensionIndices.GetWidthIndex()];
50  unsigned int inHeight = inputShape[dimensionIndices.GetHeightIndex()];
51  unsigned int inChannels = inputShape[dimensionIndices.GetChannelsIndex()];
52  unsigned int inBatchSize = inputShape[0];
53 
54  bool isGlobalPooling = (m_Param.m_StrideX==0 && m_Param.m_StrideY==0);
55  unsigned int outWidth = 1;
56  unsigned int outHeight = 1;
57  if (!isGlobalPooling)
58  {
60  "Stride can only be zero when performing global pooling");
61 
62  auto CalcSize = [](auto inSize, auto lowPad, auto highPad, auto poolSize, auto stride, auto outputShapeRounding)
63  {
64  unsigned int readSize = inSize + lowPad + highPad - poolSize;
65  float div = static_cast<float>(readSize) / static_cast<float>(stride);
66 
67  unsigned int size = 0;
68  switch (outputShapeRounding)
69  {
71  size = static_cast<unsigned int>(ceil(div)) + 1;
72  break;
73  case OutputShapeRounding ::Floor:
74  size = static_cast<unsigned int>(floor(div)) + 1;
75  break;
76  default:
77  ARMNN_ASSERT_MSG(false, "Unsupported Output Shape Rounding");
78  }
79 
80  // MakeS sure that border operations will start from inside the input and not the padded area.
81  // This is what CL does...
82  if ((size - 1)*stride >= inSize + lowPad)
83  {
84  --size;
85  }
86 
87  return size;
88  };
89 
90  outWidth = CalcSize(inWidth, m_Param.m_PadLeft, m_Param.m_PadRight, m_Param.m_PoolWidth, m_Param.m_StrideX,
92  outHeight = CalcSize(inHeight, m_Param.m_PadTop, m_Param.m_PadBottom, m_Param.m_PoolHeight, m_Param.m_StrideY,
94  }
95  unsigned int outChannels = inChannels;
96  unsigned int outBatchSize = inBatchSize;
97 
99  TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
100  TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
101 
102  return std::vector<TensorShape>({ tensorShape });
103 }
104 
106 {
108 
109  const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
110 
112 
113  auto inferredShapes = InferOutputShapes({ GetInputSlot(0).GetTensorInfo().GetShape() });
114 
115  ARMNN_ASSERT(inferredShapes.size() == 1);
116 
117  ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "Pooling2dLayer");
118 }
119 
121 {
122  strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
123 }
124 
125 } // namespace armnn
ARMNN_ASSERT
#define ARMNN_ASSERT(COND)
Definition: Assert.hpp:14
armnn::OutputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Definition: Layer.cpp:92
WorkloadData.hpp
armnn::Pooling2dDescriptor::m_PoolHeight
uint32_t m_PoolHeight
Pooling height value.
Definition: Descriptors.hpp:417
armnn::DataLayout::NHWC
@ NHWC
armnn::Pooling2d
void Pooling2d(Decoder< float > &rInputDecoder, Encoder< float > &rOutputEncoder, const TensorInfo &inputInfo, const TensorInfo &outputInfo, const Pooling2dDescriptor &params)
Computes the Pooling2d operation.
Definition: Pooling2d.cpp:142
TypesUtils.hpp
armnn::Pooling2dDescriptor::m_StrideY
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
Definition: Descriptors.hpp:421
CHECK_LOCATION
#define CHECK_LOCATION()
Definition: Exceptions.hpp:203
armnnUtils::DataLayoutIndexed
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
Definition: DataLayoutIndexed.hpp:17
armnn::Layer::ValidateAndCopyShape
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition: Layer.cpp:435
armnn::Layer::GetOutputSlot
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition: Layer.hpp:339
armnn::Pooling2dDescriptor::m_PadTop
uint32_t m_PadTop
Padding top value in the height dimension.
Definition: Descriptors.hpp:411
armnn::Pooling2dLayer::ValidateTensorShapesFromInputs
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Pooling2dLayer.
Definition: Pooling2dLayer.cpp:105
armnn::Pooling2dDescriptor::m_PoolWidth
uint32_t m_PoolWidth
Pooling width value.
Definition: Descriptors.hpp:415
armnn::IStrategy
Definition: IStrategy.hpp:16
ARMNN_ASSERT_MSG
#define ARMNN_ASSERT_MSG(COND, MSG)
Definition: Assert.hpp:15
armnn::Pooling2dLayer::ExecuteStrategy
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
Definition: Pooling2dLayer.cpp:120
armnn::Layer::GetInputSlot
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
armnn::LayerWithParameters< Pooling2dDescriptor >::GetParameters
const Pooling2dDescriptor & GetParameters() const override
Definition: LayerWithParameters.hpp:19
armnn::ceil
Definition: Ceil.hpp:13
WorkloadFactory.hpp
armnn::LayerWithParameters
Definition: LayerWithParameters.hpp:14
armnn::Layer::GetName
const char * GetName() const override
Returns the name of the layer.
Definition: Layer.hpp:332
armnnUtils::DataLayoutIndexed::GetHeightIndex
unsigned int GetHeightIndex() const
Definition: DataLayoutIndexed.hpp:24
armnn::Pooling2dLayer::Pooling2dLayer
Pooling2dLayer(const Pooling2dDescriptor &param, const char *name)
Constructor to create a Pooling2dLayer.
Definition: Pooling2dLayer.cpp:22
armnn::InputSlot::GetTensorInfo
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition: Layer.cpp:592
armnn::TensorShape
Definition: Tensor.hpp:20
armnn::LayerWithParameters< Pooling2dDescriptor >::m_Param
Pooling2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
Definition: LayerWithParameters.hpp:52
armnn::Pooling2dDescriptor::m_DataLayout
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
Definition: Descriptors.hpp:427
armnn::TensorShape::GetNumDimensions
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition: Tensor.cpp:174
armnn::Pooling2dDescriptor::m_PadBottom
uint32_t m_PadBottom
Padding bottom value in the height dimension.
Definition: Descriptors.hpp:413
armnn::Pooling2dDescriptor::m_PadRight
uint32_t m_PadRight
Padding right value in the width dimension.
Definition: Descriptors.hpp:409
armnn::LayerWithParameters< Pooling2dDescriptor >::PrepInfoAndDesc
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
Definition: LayerWithParameters.hpp:44
armnn::IWorkloadFactory
Definition: WorkloadFactory.hpp:22
armnnUtils
Definition: CompatibleTypes.hpp:10
armnn::Layer::VerifyShapeInferenceType
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition: Layer.cpp:504
armnn::Layer::SetAdditionalInfo
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition: Layer.cpp:287
armnn::Pooling2dLayer::Clone
Pooling2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Definition: Pooling2dLayer.cpp:35
armnnUtils::DataLayoutIndexed::GetWidthIndex
unsigned int GetWidthIndex() const
Definition: DataLayoutIndexed.hpp:25
armnn::Pooling2dLayer
This layer represents a pooling 2d operation.
Definition: Pooling2dLayer.hpp:13
armnn::Pooling2dDescriptor::m_PadLeft
uint32_t m_PadLeft
Padding left value in the width dimension.
Definition: Descriptors.hpp:407
armnn::LayerType::Pooling2d
@ Pooling2d
armnn::Pooling2dDescriptor::m_StrideX
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
Definition: Descriptors.hpp:419
armnn::Pooling2dQueueDescriptor
Definition: WorkloadData.hpp:197
armnn::TensorInfo::GetShape
const TensorShape & GetShape() const
Definition: Tensor.hpp:193
armnn
Copyright (c) 2021 ARM Limited and Contributors.
Definition: 01_00_quick_start.dox:6
armnnUtils::DataLayoutIndexed::GetChannelsIndex
unsigned int GetChannelsIndex() const
Definition: DataLayoutIndexed.hpp:23
armnn::Pooling2dLayer::CreateWorkload
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Pooling2d type.
Definition: Pooling2dLayer.cpp:27
armnn::Layer::VerifyLayerConnections
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition: Layer.cpp:391
armnn::Pooling2dDescriptor::m_OutputShapeRounding
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
Definition: Descriptors.hpp:423
armnn::Pooling2dLayer::InferOutputShapes
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
Definition: Pooling2dLayer.cpp:40
armnn::OutputShapeRounding::Ceiling
@ Ceiling
armnn::Pooling2dDescriptor
A Pooling2dDescriptor for the Pooling2dLayer.
Definition: Descriptors.hpp:371
Pooling2dLayer.hpp
armnn::Layer::m_ShapeInferenceMethod
ShapeInferenceMethod m_ShapeInferenceMethod
Definition: Layer.hpp:441
armnn::LayerType
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition: Types.hpp:491
DataLayoutIndexed.hpp
armnn::Graph
Definition: Graph.hpp:30
armnn::IWorkloadFactory::CreateWorkload
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
armnn::IStrategy::ExecuteStrategy
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
LayerCloneBase.hpp