ArmNN
 25.11
Loading...
Searching...
No Matches
Conv2dOperator.cpp File Reference
Include dependency graph for Conv2dOperator.cpp:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertConv2dToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const Convolution2dDescriptor *conv2dDescriptor)

Function Documentation

◆ ConvertConv2dToTosaOperator()

TosaSerializationBasicBlock * ConvertConv2dToTosaOperator ( const Layer * layer,
const std::vector< const TensorInfo * > & inputs,
const std::vector< const TensorInfo * > & outputs,
const Convolution2dDescriptor * conv2dDescriptor )

Definition at line 10 of file Conv2dOperator.cpp.

14{
15 std::vector<std::string> inputNames;
16 std::string outputName = std::string("output0_");
17 std::string blockName = std::string("Op_CONV2D_block_") + GetUniqueTosaMappingID();
18
19 DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
20 DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
21
22 // Set input names for validation purposes only.
23 if(layer == nullptr)
24 {
25 inputNames.emplace_back("input_0");
26 inputNames.emplace_back("input_1");
27 if(conv2dDescriptor->m_BiasEnabled)
28 {
29 inputNames.emplace_back("input_2");
30 }
31 }
32 // If a layer is present then the block will be used for execution, so input and output names need to be
33 // determined using the previous and following layers so the graph is connected correctly.
34 // For validation this doesn't matter.
35 else
36 {
37 // Get the layer connected to the input slot and determine unique tensor names.
38 for (uint32_t i = 0; i < inputs.size(); ++i)
39 {
40 std::string inputName = GenerateUniqueInputName(layer->GetInputSlot(i));
41 inputNames.push_back(inputName);
42 }
43
44 // Determine unique output tensor name.
45 outputName = GenerateUniqueOutputName(*layer);
46 }
47
48 std::vector<TosaSerializationTensor*> tensors;
49 std::vector<TosaSerializationOperator*> operators;
50
51 // Setup input Tensor
52 // Only add tensor if connected layer is an input layer.
53 // As intermediate or constant tensors will be created separately.
54 // There also can't be duplicate tensors.
55 std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
56 if(inputNames[0].find("input_") != std::string::npos)
57 {
58 tensors.push_back(new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
59 }
60
61 // Only add input tensors if weights and bias are not constant or if running validation.
62 // Constant tensors will be created in the ConvertConstantToTosaOperator function.
63 std::vector<int32_t> inputShape1 = GetTosaTensorShape(inputs[1]->GetShape());
64 if(!inputs[1]->IsConstant() || layer == nullptr)
65 {
66 DType inputDType1 = ArmNNToDType(inputs[1]->GetDataType());
67 tensors.push_back(new TosaSerializationTensor(inputNames[1], inputShape1, inputDType1, {}));
68 }
69
70 if(conv2dDescriptor->m_BiasEnabled)
71 {
72 if(!inputs[2]->IsConstant() || layer == nullptr)
73 {
74 std::vector<int32_t> inputShape2 = GetTosaTensorShape(inputs[2]->GetShape());
75 DType inputDType2 = ArmNNToDType(inputs[2]->GetDataType());
76
77 tensors.push_back(new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
78 }
79 }
80 else
81 {
82 // If bias is disabled, create a constant bias of 0 as three inputs are required.
83 std::string constantName = std::string("constant_") + GetUniqueTosaMappingID();
84
85 operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {constantName}));
86
87 // The size of the bias must match the channels dimension, so get the correct index.
88 unsigned int index = (conv2dDescriptor->m_DataLayout == DataLayout::NHWC) ? 3 : 1;
89
90 const DType dType = (inputDType0 == DType_INT8) ? DType_INT32 : outputDType0;
91 std::vector<float> data(outputs[0]->GetShape()[index], 0);
92
93 std::vector<uint8_t> uint8Data;
94 TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
95
96 tensors.push_back(new TosaSerializationTensor(constantName,
97 {static_cast<int32_t>(outputs[0]->GetShape()[index])},
98 dType,
99 uint8Data));
100 inputNames.emplace_back(constantName);
101 }
102
103 // Setup Output Tensor
104 std::vector<int32_t> outputShape0 = {GetTosaTensorShape(outputs[0]->GetShape())};
105 std::string outputConv2dName;
106 bool isInputInt8 = (inputDType0 == DType_INT8);
107 if (isInputInt8)
108 {
109 outputConv2dName = std::string("layer_intermediate0_") + GetUniqueTosaMappingID();
110 tensors.push_back(new TosaSerializationTensor(outputConv2dName, outputShape0, DType_INT32, {}));
111 }
112 else
113 {
114 tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
115 }
116
117 // Set up CONV2D operator
118 std::vector<int> pad = {static_cast<int>(conv2dDescriptor->m_PadTop),
119 static_cast<int>(conv2dDescriptor->m_PadBottom),
120 static_cast<int>(conv2dDescriptor->m_PadLeft),
121 static_cast<int>(conv2dDescriptor->m_PadRight)};
122 std::vector<int> stride = {static_cast<int>(conv2dDescriptor->m_StrideY),
123 static_cast<int>(conv2dDescriptor->m_StrideX)};
124 std::vector<int> dilation = {static_cast<int>(conv2dDescriptor->m_DilationY),
125 static_cast<int>(conv2dDescriptor->m_DilationX)};
126
127 std::string sliceOutputName = GetInputSlicedToItsUsedSize(inputShape0,
128 inputNames[0],
129 conv2dDescriptor->m_DataLayout,
130 inputDType0,
131 inputShape1,
132 pad,
133 stride,
134 dilation,
135 tensors,
136 operators);
137
138 TosaConvAttribute attribute(pad, stride, dilation,
139 inputs[0]->GetQuantizationOffset(), // input_zp
140 inputs[1]->GetQuantizationOffset(), // weight_zp
141 false); // local_bound
142
143 std::string& convOutStr = isInputInt8 ? outputConv2dName : outputName;
144 auto* conv2d_op = new TosaSerializationOperator(Op_CONV2D,
145 Attribute_ConvAttribute,
146 &attribute,
147 {sliceOutputName, inputNames[1], inputNames[2]},
148 {convOutStr});
149 operators.push_back(conv2d_op);
150
151 if (isInputInt8)
152 {
153 int32_t output_zp = outputs[0]->GetQuantizationOffset();
154 double output_scale = outputs[0]->GetQuantizationScales()[0];
155 double input_scale = inputs[0]->GetQuantizationScales()[0];
156 const std::vector<float>& weight_scales = inputs[1]->GetQuantizationScales();
157
158 TosaSerializationOperator* rescaleOp = nullptr;
160 outputName,
161 0,
162 output_zp,
163 false,
164 false,
165 true,
166 true,
167 input_scale,
168 output_scale,
169 weight_scales,
170 &rescaleOp);
171 operators.push_back(rescaleOp);
172 tensors.push_back(new TosaSerializationTensor(outputName,
173 outputShape0,
174 DType_INT8,
175 {}));
176 }
177
178 // operatorInputNames/operatorOutputNames ends up being the same as
179 // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
180 return new TosaSerializationBasicBlock(blockName, // name
181 mainName, // region name
182 operators, // operators
183 tensors, // tensors
184 inputNames, // inputs
185 {outputName}); // outputs
186}
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetInputSlicedToItsUsedSize(const std::vector< int32_t > &inputShape, const std::string &inputName, const DataLayout layout, const DType datatype, const std::vector< int32_t > &kernel, const std::vector< int32_t > &pad, const std::vector< int32_t > &stride, const std::vector< int32_t > &dilations, std::vector< TosaSerializationTensor * > &tensors, std::vector< TosaSerializationOperator * > &operators, const bool isPoolingOp=false)
std::string GetUniqueTosaMappingID()
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
void CreateRescaleTosaOperatorForWeights(const std::string &inputName, const std::string &outputName, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, double input_scale, double output_scale, const std::vector< float > &weight_scales, TosaSerializationOperator **op)
Creates a TOSA rescale operator for weight tensors.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation along y axis.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.

References ArmNNToDType(), CreateRescaleTosaOperatorForWeights(), GenerateUniqueInputName(), GenerateUniqueOutputName(), GetInputSlicedToItsUsedSize(), Layer::GetInputSlot(), GetTosaTensorShape(), GetUniqueTosaMappingID(), Convolution2dDescriptor::m_BiasEnabled, Convolution2dDescriptor::m_DataLayout, Convolution2dDescriptor::m_DilationX, Convolution2dDescriptor::m_DilationY, Convolution2dDescriptor::m_PadBottom, Convolution2dDescriptor::m_PadLeft, Convolution2dDescriptor::m_PadRight, Convolution2dDescriptor::m_PadTop, Convolution2dDescriptor::m_StrideX, Convolution2dDescriptor::m_StrideY, and mainName.

Referenced by GetTosaMapping().