11 const std::vector<const TensorInfo*>& inputs,
12 const std::vector<const TensorInfo*>& outputs,
15 std::vector<std::string> inputNames;
16 std::string outputName = std::string(
"output0_");
19 DType inputDType0 =
ArmNNToDType(inputs[0]->GetDataType());
20 DType outputDType0 =
ArmNNToDType(outputs[0]->GetDataType());
25 inputNames.emplace_back(
"input_0");
26 inputNames.emplace_back(
"input_1");
29 inputNames.emplace_back(
"input_2");
38 for (uint32_t i = 0; i < inputs.size(); ++i)
41 inputNames.push_back(inputName);
48 std::vector<TosaSerializationTensor*> tensors;
49 std::vector<TosaSerializationOperator*> operators;
55 if(inputNames[0].find(
"input_") != std::string::npos)
58 tensors.push_back(
new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
63 if(!inputs[1]->IsConstant() || layer ==
nullptr)
66 DType inputDType1 =
ArmNNToDType(inputs[1]->GetDataType());
68 tensors.push_back(
new TosaSerializationTensor(inputNames[1], inputShape1, inputDType1, {}));
73 if(!inputs[2]->IsConstant() || layer ==
nullptr)
76 DType inputDType2 =
ArmNNToDType(inputs[2]->GetDataType());
78 tensors.push_back(
new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
86 operators.push_back(
new TosaSerializationOperator(Op_CONST, Attribute_NONE,
nullptr, {}, {constantName}));
89 unsigned int index = (conv2dDescriptor->
m_DataLayout == DataLayout::NHWC) ? 3 : 1;
91 const DType dType = (inputDType0 == DType_INT8) ? DType_INT32 : outputDType0;
92 std::vector<float> data(outputs[0]->GetShape()[index], 0);
94 std::vector<uint8_t> uint8Data;
95 TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
97 tensors.push_back(
new TosaSerializationTensor(constantName,
98 {
static_cast<int32_t
>(outputs[0]->GetShape()[index])},
101 inputNames.emplace_back(constantName);
106 std::string outputConv2dName;
107 bool isInputInt8 = (inputDType0 == DType_INT8);
111 tensors.push_back(
new TosaSerializationTensor(outputConv2dName, outputShape0, DType_INT32, {}));
115 tensors.push_back(
new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
119 std::vector<int> pad = {
static_cast<int>(conv2dDescriptor->
m_PadTop),
121 static_cast<int>(conv2dDescriptor->
m_PadLeft),
122 static_cast<int>(conv2dDescriptor->
m_PadRight)};
123 std::vector<int> stride = {
static_cast<int>(conv2dDescriptor->
m_StrideY),
124 static_cast<int>(conv2dDescriptor->
m_StrideX)};
125 std::vector<int> dilation = {
static_cast<int>(conv2dDescriptor->
m_DilationY),
127 TosaConvAttribute attribute(pad, stride, dilation,
128 inputs[0]->GetQuantizationOffset(),
129 inputs[1]->GetQuantizationOffset(),
132 std::string& convOutStr = isInputInt8 ? outputConv2dName : outputName;
133 auto* conv2d_op =
new TosaSerializationOperator(Op_CONV2D,
134 Attribute_ConvAttribute,
138 operators.push_back(conv2d_op);
142 int32_t output_zp = outputs[0]->GetQuantizationOffset();
143 double output_scale = outputs[0]->GetQuantizationScales()[0];
144 double input_scale = inputs[0]->GetQuantizationScales()[0];
145 const std::vector<float>& weight_scales = inputs[1]->GetQuantizationScales();
147 TosaSerializationOperator* rescaleOp =
nullptr;
160 operators.push_back(rescaleOp);
161 tensors.push_back(
new TosaSerializationTensor(outputName,
169 return new TosaSerializationBasicBlock(blockName,
TosaSerializationBasicBlock * ConvertConv2dToTosaOperator(const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const Convolution2dDescriptor *conv2dDescriptor)
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
void CreateRescaleTosaOperatorForWeights(const std::string &inputName, const std::string &outputName, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, double input_scale, double output_scale, const std::vector< float > &weight_scales, TosaSerializationOperator **op)
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
A Convolution2dDescriptor for the Convolution2dLayer.
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation along y axis.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.