ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Conv2dOperator.hpp File Reference
Include dependency graph for Conv2dOperator.hpp:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

TosaSerializationBasicBlock * ConvertConv2dToTosaOperator (const Layer *layer, const std::vector< const TensorInfo * > &inputs, const std::vector< const TensorInfo * > &outputs, const Convolution2dDescriptor *conv2dDescriptor)
 

Function Documentation

◆ ConvertConv2dToTosaOperator()

TosaSerializationBasicBlock* ConvertConv2dToTosaOperator ( const Layer layer,
const std::vector< const TensorInfo * > &  inputs,
const std::vector< const TensorInfo * > &  outputs,
const Convolution2dDescriptor conv2dDescriptor 
)

Definition at line 10 of file Conv2dOperator.cpp.

14 {
15  std::vector<std::string> inputNames;
16  std::string outputName = std::string("output0_");
17  std::string blockName = std::string("Op_CONV2D_block_") + GetUniqueTosaMappingID();
18 
19  DType inputDType0 = ArmNNToDType(inputs[0]->GetDataType());
20  DType outputDType0 = ArmNNToDType(outputs[0]->GetDataType());
21 
22  // Set input names for validation purposes only.
23  if(layer == nullptr)
24  {
25  inputNames.emplace_back("input_0");
26  inputNames.emplace_back("input_1");
27  if(conv2dDescriptor->m_BiasEnabled)
28  {
29  inputNames.emplace_back("input_2");
30  }
31  }
32  // If a layer is present then the block will be used for execution, so input and output names need to be
33  // determined using the previous and following layers so the graph is connected correctly.
34  // For validation this doesn't matter.
35  else
36  {
37  // Get the layer connected to the input slot and determine unique tensor names.
38  for (uint32_t i = 0; i < inputs.size(); ++i)
39  {
40  std::string inputName = GenerateUniqueInputName(layer->GetInputSlot(i));
41  inputNames.push_back(inputName);
42  }
43 
44  // Determine unique output tensor name.
45  outputName = GenerateUniqueOutputName(*layer);
46  }
47 
48  std::vector<TosaSerializationTensor*> tensors;
49  std::vector<TosaSerializationOperator*> operators;
50 
51  // Setup input Tensor
52  // Only add tensor if connected layer is an input layer.
53  // As intermediate or constant tensors will be created separately.
54  // There also can't be duplicate tensors.
55  if(inputNames[0].find("input_") != std::string::npos)
56  {
57  std::vector<int32_t> inputShape0 = GetTosaTensorShape(inputs[0]->GetShape());
58  tensors.push_back(new TosaSerializationTensor(inputNames[0], inputShape0, inputDType0, {}));
59  }
60 
61  // Only add input tensors if weights and bias are not constant or if running validation.
62  // Constant tensors will be created in the ConvertConstantToTosaOperator function.
63  if(!inputs[1]->IsConstant() || layer == nullptr)
64  {
65  std::vector<int32_t> inputShape1 = GetTosaTensorShape(inputs[1]->GetShape());
66  DType inputDType1 = ArmNNToDType(inputs[1]->GetDataType());
67 
68  tensors.push_back(new TosaSerializationTensor(inputNames[1], inputShape1, inputDType1, {}));
69  }
70 
71  if(conv2dDescriptor->m_BiasEnabled)
72  {
73  if(!inputs[2]->IsConstant() || layer == nullptr)
74  {
75  std::vector<int32_t> inputShape2 = GetTosaTensorShape(inputs[2]->GetShape());
76  DType inputDType2 = ArmNNToDType(inputs[2]->GetDataType());
77 
78  tensors.push_back(new TosaSerializationTensor(inputNames[2], inputShape2, inputDType2, {}));
79  }
80  }
81  else
82  {
83  // If bias is disabled, create a constant bias of 0 as three inputs are required.
84  std::string constantName = std::string("constant_") + GetUniqueTosaMappingID();
85 
86  operators.push_back(new TosaSerializationOperator(Op_CONST, Attribute_NONE, nullptr, {}, {constantName}));
87 
88  // The size of the bias must match the channels dimension, so get the correct index.
89  unsigned int index = (conv2dDescriptor->m_DataLayout == DataLayout::NHWC) ? 3 : 1;
90 
91  const DType dType = (inputDType0 == DType_INT8) ? DType_INT32 : outputDType0;
92  std::vector<float> data(outputs[0]->GetShape()[index], 0);
93 
94  std::vector<uint8_t> uint8Data;
95  TosaSerializationHandler::ConvertF32toU8(data, uint8Data);
96 
97  tensors.push_back(new TosaSerializationTensor(constantName,
98  {static_cast<int32_t>(outputs[0]->GetShape()[index])},
99  dType,
100  uint8Data));
101  inputNames.emplace_back(constantName);
102  }
103 
104  // Setup Output Tensor
105  std::vector<int32_t> outputShape0 = {GetTosaTensorShape(outputs[0]->GetShape())};
106  std::string outputConv2dName;
107  bool isInputInt8 = (inputDType0 == DType_INT8);
108  if (isInputInt8)
109  {
110  outputConv2dName = std::string("intermediate0_") + GetUniqueTosaMappingID();
111  tensors.push_back(new TosaSerializationTensor(outputConv2dName, outputShape0, DType_INT32, {}));
112  }
113  else
114  {
115  tensors.push_back(new TosaSerializationTensor(outputName, outputShape0, outputDType0, {}));
116  }
117 
118  // Set up CONV2D operator
119  std::vector<int> pad = {static_cast<int>(conv2dDescriptor->m_PadTop),
120  static_cast<int>(conv2dDescriptor->m_PadBottom),
121  static_cast<int>(conv2dDescriptor->m_PadLeft),
122  static_cast<int>(conv2dDescriptor->m_PadRight)};
123  std::vector<int> stride = {static_cast<int>(conv2dDescriptor->m_StrideY),
124  static_cast<int>(conv2dDescriptor->m_StrideX)};
125  std::vector<int> dilation = {static_cast<int>(conv2dDescriptor->m_DilationY),
126  static_cast<int>(conv2dDescriptor->m_DilationX)};
127  TosaConvAttribute attribute(pad, stride, dilation,
128  inputs[0]->GetQuantizationOffset(), // input_zp
129  inputs[1]->GetQuantizationOffset(), // weight_zp
130  false); // local_bound
131 
132  std::string& convOutStr = isInputInt8 ? outputConv2dName : outputName;
133  auto* conv2d_op = new TosaSerializationOperator(Op_CONV2D,
134  Attribute_ConvAttribute,
135  &attribute,
136  inputNames,
137  {convOutStr});
138  operators.push_back(conv2d_op);
139 
140  if (isInputInt8)
141  {
142  int32_t output_zp = outputs[0]->GetQuantizationOffset();
143  double output_scale = outputs[0]->GetQuantizationScales()[0];
144  double input_scale = inputs[0]->GetQuantizationScales()[0];
145  const std::vector<float>& weight_scales = inputs[1]->GetQuantizationScales();
146 
147  TosaSerializationOperator* rescaleOp = nullptr;
148  CreateRescaleTosaOperatorForWeights(outputConv2dName,
149  outputName,
150  0,
151  output_zp,
152  false,
153  false,
154  true,
155  true,
156  input_scale,
157  output_scale,
158  weight_scales,
159  &rescaleOp);
160  operators.push_back(rescaleOp);
161  tensors.push_back(new TosaSerializationTensor(outputName,
162  outputShape0,
163  DType_INT8,
164  {}));
165  }
166 
167  // operatorInputNames/operatorOutputNames ends up being the same as
168  // blockInputNames/blockOutputNames for one-to-one ArmNN to TOSA mappings
169  return new TosaSerializationBasicBlock(blockName, // name
170  mainName, // region name
171  operators, // operators
172  tensors, // tensors
173  inputNames, // inputs
174  {outputName}); // outputs
175 }
std::string GenerateUniqueOutputName(const Layer &layer, uint32_t layerSlot=0)
const std::string mainName
DType ArmNNToDType(const DataType &type)
std::vector< int32_t > GetTosaTensorShape(const TensorShape &shape)
std::string GenerateUniqueInputName(const armnn::InputSlot &slot)
std::string GetUniqueTosaMappingID()
void CreateRescaleTosaOperatorForWeights(const std::string &inputName, const std::string &outputName, int32_t input_zp, int32_t output_zp, bool input_unsigned, bool output_unsigned, bool double_round, bool scale32, double input_scale, double output_scale, const std::vector< float > &weight_scales, TosaSerializationOperator **op)
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition: Layer.hpp:337
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_DilationY
Dilation along y axis.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation along x axis.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
bool m_BiasEnabled
Enable/disable bias.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.

References ArmNNToDType(), GenerateUniqueInputName(), GenerateUniqueOutputName(), Layer::GetInputSlot(), GetTosaTensorShape(), GetUniqueTosaMappingID(), and Convolution2dDescriptor::m_BiasEnabled.

Referenced by GetTosaMapping().