ArmNN
 25.11
Loading...
Searching...
No Matches
LstmLayer.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5#include "LstmLayer.hpp"
6
7#include "LayerCloneBase.hpp"
8
10#include <armnn/TypesUtils.hpp>
13
14namespace armnn
15{
16
17LstmLayer::LstmLayer(const LstmDescriptor& param, const char* name)
18 : LayerWithParameters(3, 4, LayerType::Lstm, param, name)
19{
20}
21
22std::unique_ptr<IWorkload> LstmLayer::CreateWorkload(const IWorkloadFactory& factory) const
23{
24 LstmQueueDescriptor descriptor;
25
26 // Basic parameters
27 descriptor.m_InputToForgetWeights = m_BasicParameters.m_InputToForgetWeights.get();
28 descriptor.m_InputToCellWeights = m_BasicParameters.m_InputToCellWeights.get();
29 descriptor.m_InputToOutputWeights = m_BasicParameters.m_InputToOutputWeights.get();
30 descriptor.m_RecurrentToForgetWeights = m_BasicParameters.m_RecurrentToForgetWeights.get();
31 descriptor.m_RecurrentToCellWeights = m_BasicParameters.m_RecurrentToCellWeights.get();
32 descriptor.m_RecurrentToOutputWeights = m_BasicParameters.m_RecurrentToOutputWeights.get();
33 descriptor.m_ForgetGateBias = m_BasicParameters.m_ForgetGateBias.get();
34 descriptor.m_CellBias = m_BasicParameters.m_CellBias.get();
35 descriptor.m_OutputGateBias = m_BasicParameters.m_OutputGateBias.get();
36
37 // Cifg parameters
38 if (!m_Param.m_CifgEnabled)
39 {
40 descriptor.m_InputToInputWeights = m_CifgParameters.m_InputToInputWeights.get();
41 descriptor.m_RecurrentToInputWeights = m_CifgParameters.m_RecurrentToInputWeights.get();
42 descriptor.m_InputGateBias = m_CifgParameters.m_InputGateBias.get();
43 }
44
45 // Projection parameters
46 if (m_Param.m_ProjectionEnabled)
47 {
48 descriptor.m_ProjectionWeights = m_ProjectionParameters.m_ProjectionWeights.get();
49 descriptor.m_ProjectionBias = m_ProjectionParameters.m_ProjectionBias.get();
50 }
51
52 // Peephole parameters
53 if (m_Param.m_PeepholeEnabled)
54 {
55 if (!m_Param.m_CifgEnabled)
56 {
57 descriptor.m_CellToInputWeights = m_PeepholeParameters.m_CellToInputWeights.get();
58 }
59 descriptor.m_CellToForgetWeights = m_PeepholeParameters.m_CellToForgetWeights.get();
60 descriptor.m_CellToOutputWeights = m_PeepholeParameters.m_CellToOutputWeights.get();
61 }
62
63 // Layer normalisation parameters
64 if(m_Param.m_LayerNormEnabled)
65 {
66 if (!m_Param.m_CifgEnabled)
67 {
68 descriptor.m_InputLayerNormWeights = m_LayerNormParameters.m_InputLayerNormWeights.get();
69 }
70 descriptor.m_ForgetLayerNormWeights = m_LayerNormParameters.m_ForgetLayerNormWeights.get();
71 descriptor.m_CellLayerNormWeights = m_LayerNormParameters.m_CellLayerNormWeights.get();
72 descriptor.m_OutputLayerNormWeights = m_LayerNormParameters.m_OutputLayerNormWeights.get();
73 }
74
75 SetAdditionalInfo(descriptor);
76
77 return factory.CreateWorkload(LayerType::Lstm, descriptor, PrepInfoAndDesc(descriptor));
78}
79
81{
82 auto layer = CloneBase<LstmLayer>(graph, m_Param, GetName());
83
84 layer->m_BasicParameters.m_InputToForgetWeights = m_BasicParameters.m_InputToForgetWeights ?
85 m_BasicParameters.m_InputToForgetWeights
86 : nullptr;
87 layer->m_BasicParameters.m_InputToCellWeights = m_BasicParameters.m_InputToCellWeights ?
88 m_BasicParameters.m_InputToCellWeights : nullptr;
89 layer->m_BasicParameters.m_InputToOutputWeights = m_BasicParameters.m_InputToOutputWeights ?
90 m_BasicParameters.m_InputToOutputWeights : nullptr;
91 layer->m_BasicParameters.m_RecurrentToForgetWeights = m_BasicParameters.m_RecurrentToForgetWeights ?
92 m_BasicParameters.m_RecurrentToForgetWeights : nullptr;
93 layer->m_BasicParameters.m_RecurrentToCellWeights = m_BasicParameters.m_RecurrentToCellWeights ?
94 m_BasicParameters.m_RecurrentToCellWeights : nullptr;
95 layer->m_BasicParameters.m_RecurrentToOutputWeights = m_BasicParameters.m_RecurrentToOutputWeights ?
96 m_BasicParameters.m_RecurrentToOutputWeights : nullptr;
97 layer->m_BasicParameters.m_ForgetGateBias = m_BasicParameters.m_ForgetGateBias ?
98 m_BasicParameters.m_ForgetGateBias : nullptr;
99 layer->m_BasicParameters.m_CellBias = m_BasicParameters.m_CellBias ?
100 m_BasicParameters.m_CellBias : nullptr;
101 layer->m_BasicParameters.m_OutputGateBias = m_BasicParameters.m_OutputGateBias ?
102 m_BasicParameters.m_OutputGateBias : nullptr;
103
104 if (!m_Param.m_CifgEnabled)
105 {
106 layer->m_CifgParameters.m_InputToInputWeights = m_CifgParameters.m_InputToInputWeights ?
107 m_CifgParameters.m_InputToInputWeights : nullptr;
108 layer->m_CifgParameters.m_RecurrentToInputWeights = m_CifgParameters.m_RecurrentToInputWeights ?
109 m_CifgParameters.m_RecurrentToInputWeights : nullptr;
110 layer->m_CifgParameters.m_InputGateBias = m_CifgParameters.m_InputGateBias ?
111 m_CifgParameters.m_InputGateBias : nullptr;
112 }
113
114 if (m_Param.m_ProjectionEnabled)
115 {
116 layer->m_ProjectionParameters.m_ProjectionWeights = m_ProjectionParameters.m_ProjectionWeights ?
117 m_ProjectionParameters.m_ProjectionWeights : nullptr;
118 layer->m_ProjectionParameters.m_ProjectionBias = m_ProjectionParameters.m_ProjectionBias ?
119 m_ProjectionParameters.m_ProjectionBias : nullptr;
120 }
121
122 if (m_Param.m_PeepholeEnabled)
123 {
124 if (!m_Param.m_CifgEnabled)
125 {
126 layer->m_PeepholeParameters.m_CellToInputWeights = m_PeepholeParameters.m_CellToInputWeights ?
127 m_PeepholeParameters.m_CellToInputWeights : nullptr;
128 }
129 layer->m_PeepholeParameters.m_CellToForgetWeights = m_PeepholeParameters.m_CellToForgetWeights ?
130 m_PeepholeParameters.m_CellToForgetWeights : nullptr;
131 layer->m_PeepholeParameters.m_CellToOutputWeights = m_PeepholeParameters.m_CellToOutputWeights ?
132 m_PeepholeParameters.m_CellToOutputWeights : nullptr;
133 }
134
135 if (m_Param.m_LayerNormEnabled)
136 {
137 layer->m_LayerNormParameters.m_InputLayerNormWeights = m_LayerNormParameters.m_InputLayerNormWeights ?
138 m_LayerNormParameters.m_InputLayerNormWeights : nullptr;
139 layer->m_LayerNormParameters.m_ForgetLayerNormWeights = m_LayerNormParameters.m_ForgetLayerNormWeights ?
140 m_LayerNormParameters.m_ForgetLayerNormWeights : nullptr;
141 layer->m_LayerNormParameters.m_CellLayerNormWeights = m_LayerNormParameters.m_CellLayerNormWeights ?
142 m_LayerNormParameters.m_CellLayerNormWeights : nullptr;
143 layer->m_LayerNormParameters.m_OutputLayerNormWeights = m_LayerNormParameters.m_OutputLayerNormWeights ?
144 m_LayerNormParameters.m_OutputLayerNormWeights : nullptr;
145 }
146
147 return std::move(layer);
148}
149
150std::vector<TensorShape> LstmLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
151{
152 if (inputShapes.size() != 3)
153 {
154 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
155 "\" - should be \"3\".");
156 }
157
158 // Get input values for validation
159 unsigned int batchSize = inputShapes[0][0];
160 unsigned int outputSize = inputShapes[1][1];
161 unsigned int numUnits = inputShapes[2][1];
162
163 std::vector<TensorShape> outShapes;
164 outShapes.push_back(TensorShape({batchSize, numUnits * (m_Param.m_CifgEnabled ? 3 : 4)}));
165 outShapes.push_back(TensorShape({batchSize, outputSize}));
166 outShapes.push_back(TensorShape({batchSize, numUnits}));
167 outShapes.push_back(TensorShape({batchSize, outputSize}));
168
169 return outShapes;
170}
171
173{
175
176 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
177
179
180 auto inferredShapes = InferOutputShapes( {
184 });
185
186 if (inferredShapes.size() != 4)
187 {
188 throw armnn::Exception("inferredShapes has "
189 + std::to_string(inferredShapes.size()) +
190 " element(s) - should only have 4.");
191 }
192
193 // Check if the weights are nullptr
194 if (!m_BasicParameters.m_InputToForgetWeights)
195 {
196 throw armnn::NullPointerException("LstmLayer: "
197 "m_BasicParameters.m_InputToForgetWeights should not be null.");
198 }
199
200 if (!m_BasicParameters.m_InputToCellWeights)
201 {
202 throw armnn::NullPointerException("LstmLayer: "
203 "m_BasicParameters.m_InputToCellWeights should not be null.");
204 }
205
206 if (!m_BasicParameters.m_InputToOutputWeights)
207 {
208 throw armnn::NullPointerException("LstmLayer: "
209 "m_BasicParameters.m_InputToOutputWeights should not be null.");
210 }
211
212 if (!m_BasicParameters.m_RecurrentToForgetWeights)
213 {
214 throw armnn::NullPointerException("LstmLayer: "
215 "m_BasicParameters.m_RecurrentToForgetWeights should not be null.");
216 }
217
218 if (!m_BasicParameters.m_RecurrentToCellWeights)
219 {
220 throw armnn::NullPointerException("LstmLayer: "
221 "m_BasicParameters.m_RecurrentToCellWeights should not be null.");
222 }
223
224 if (!m_BasicParameters.m_RecurrentToOutputWeights)
225 {
226 throw armnn::NullPointerException("LstmLayer: "
227 "m_BasicParameters.m_RecurrentToOutputWeights should not be null.");
228 }
229
230 if (!m_BasicParameters.m_ForgetGateBias)
231 {
232 throw armnn::NullPointerException("LstmLayer: "
233 "m_BasicParameters.m_ForgetGateBias should not be null.");
234 }
235
236 if (!m_BasicParameters.m_CellBias)
237 {
238 throw armnn::NullPointerException("LstmLayer: "
239 "m_BasicParameters.m_CellBias should not be null.");
240 }
241
242 if (!m_BasicParameters.m_OutputGateBias)
243 {
244 throw armnn::NullPointerException("LstmLayer: "
245 "m_BasicParameters.m_OutputGateBias should not be null.");
246 }
247
248 if (!m_Param.m_CifgEnabled)
249 {
250 if (!m_CifgParameters.m_InputToInputWeights)
251 {
252 throw armnn::NullPointerException("LstmLayer: "
253 "m_CifgParameters.m_InputToInputWeights should not be null.");
254 }
255
256 if (!m_CifgParameters.m_RecurrentToInputWeights)
257 {
258 throw armnn::NullPointerException("LstmLayer: "
259 "m_CifgParameters.m_RecurrentToInputWeights should not be null.");
260 }
261
262 if (!m_CifgParameters.m_InputGateBias)
263 {
264 throw armnn::NullPointerException("LstmLayer: "
265 "m_CifgParameters.m_InputGateBias should not be null.");
266 }
267
268 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "LstmLayer");
269 }
270 else
271 {
272 if (m_CifgParameters.m_InputToInputWeights)
273 {
274 throw armnn::Exception("LstmLayer: "
275 "m_CifgParameters.m_InputToInputWeights should not have a value "
276 "when CIFG is enabled.");
277 }
278
279 if (m_CifgParameters.m_RecurrentToInputWeights)
280 {
281 throw armnn::Exception("LstmLayer: "
282 "m_CifgParameters.m_RecurrentToInputWeights should not have a value "
283 "when CIFG is enabled.");
284 }
285
286 if (m_CifgParameters.m_InputGateBias)
287 {
288 throw armnn::Exception("LstmLayer: "
289 "m_CifgParameters.m_InputGateBias should not have a value "
290 "when CIFG is enabled.");
291 }
292
293 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "LstmLayer");
294 }
295
296 if (m_Param.m_ProjectionEnabled)
297 {
298 if (!m_ProjectionParameters.m_ProjectionWeights)
299 {
300 throw armnn::NullPointerException("LstmLayer: "
301 "m_ProjectionParameters.m_ProjectionWeights should not be null.");
302 }
303 }
304
305 if (m_Param.m_PeepholeEnabled)
306 {
307 if (!m_Param.m_CifgEnabled)
308 {
309 if (!m_PeepholeParameters.m_CellToInputWeights)
310 {
311 throw armnn::NullPointerException("LstmLayer: "
312 "m_PeepholeParameters.m_CellToInputWeights should not be null "
313 "when Peephole is enabled and CIFG is disabled.");
314 }
315 }
316
317 if (!m_PeepholeParameters.m_CellToForgetWeights)
318 {
319 throw armnn::NullPointerException("LstmLayer: "
320 "m_PeepholeParameters.m_CellToForgetWeights should not be null.");
321 }
322
323 if (!m_PeepholeParameters.m_CellToOutputWeights)
324 {
325 throw armnn::NullPointerException("LstmLayer: "
326 "m_PeepholeParameters.m_CellToOutputWeights should not be null.");
327 }
328 }
329
331 GetOutputSlot(1).GetTensorInfo().GetShape(), inferredShapes[1], m_ShapeInferenceMethod, "LstmLayer", 1);
333 GetOutputSlot(2).GetTensorInfo().GetShape(), inferredShapes[2], m_ShapeInferenceMethod, "LstmLayer", 2);
335 GetOutputSlot(3).GetTensorInfo().GetShape(), inferredShapes[3], m_ShapeInferenceMethod, "LstmLayer", 3);
336
337 if (m_Param.m_LayerNormEnabled)
338 {
339 if(!m_Param.m_CifgEnabled)
340 {
341 if (!m_LayerNormParameters.m_InputLayerNormWeights)
342 {
343 throw armnn::NullPointerException("LstmLayer: "
344 "m_LayerNormParameters.m_inputLayerNormWeights should not be null.");
345 }
346 }
347
348 if (!m_LayerNormParameters.m_ForgetLayerNormWeights)
349 {
350 throw armnn::NullPointerException("LstmLayer: "
351 "m_LayerNormParameters.m_forgetLayerNormWeights should not be null.");
352 }
353
354 if (!m_LayerNormParameters.m_CellLayerNormWeights)
355 {
356 throw armnn::NullPointerException("LstmLayer: "
357 "m_LayerNormParameters.m_cellLayerNormWeights should not be null.");
358 }
359
360 if (!m_LayerNormParameters.m_OutputLayerNormWeights)
361 {
362 throw armnn::NullPointerException("LstmLayer: "
363 "m_LayerNormParameters.m_outputLayerNormWeights should not be null.");
364 }
365 }
366}
367
369{
370 // For API stability DO NOT ALTER order and add new members to the end of vector
371 return {m_BasicParameters.m_InputToForgetWeights,
372 m_BasicParameters.m_InputToCellWeights,
373 m_BasicParameters.m_InputToOutputWeights,
374 m_BasicParameters.m_RecurrentToForgetWeights,
375 m_BasicParameters.m_RecurrentToCellWeights,
376 m_BasicParameters.m_RecurrentToOutputWeights,
377 m_BasicParameters.m_ForgetGateBias,
378 m_BasicParameters.m_CellBias,
379 m_BasicParameters.m_OutputGateBias,
380
381 // Cifg parameters
382 m_CifgParameters.m_InputToInputWeights,
383 m_CifgParameters.m_RecurrentToInputWeights,
384 m_CifgParameters.m_InputGateBias,
385
386 // Projection parameters
387 m_ProjectionParameters.m_ProjectionWeights,
388 m_ProjectionParameters.m_ProjectionBias,
389
390 // Peephole parameters
391 m_PeepholeParameters.m_CellToInputWeights,
392 m_PeepholeParameters.m_CellToForgetWeights,
393 m_PeepholeParameters.m_CellToOutputWeights,
394
395 // Layer normalisation parameters
396 m_LayerNormParameters.m_InputLayerNormWeights,
397 m_LayerNormParameters.m_ForgetLayerNormWeights,
398 m_LayerNormParameters.m_CellLayerNormWeights,
399 m_LayerNormParameters.m_OutputLayerNormWeights};
400}
401
403{
404 std::vector<ConstTensor> constTensors;
405
406 LstmDescriptor descriptor = GetParameters();
407
408 ManagedConstTensorHandle managedInputToForgetWeights(m_BasicParameters.m_InputToForgetWeights);
409 ManagedConstTensorHandle managedInputToCellWeights(m_BasicParameters.m_InputToCellWeights);
410 ManagedConstTensorHandle managedInputToOutputWeights(m_BasicParameters.m_InputToOutputWeights);
411 ManagedConstTensorHandle managedRecurrentToForgetWeights(m_BasicParameters.m_RecurrentToForgetWeights);
412 ManagedConstTensorHandle managedRecurrentToCellWeights(m_BasicParameters.m_RecurrentToCellWeights);
413 ManagedConstTensorHandle managedRecurrentToOutputWeights(m_BasicParameters.m_RecurrentToOutputWeights);
414 ManagedConstTensorHandle managedForgetGateBias(m_BasicParameters.m_ForgetGateBias);
415 ManagedConstTensorHandle managedCellBias(m_BasicParameters.m_CellBias);
416 ManagedConstTensorHandle managedOutputGateBias(m_BasicParameters.m_OutputGateBias);
417
418 // Cifg parameters
419 ManagedConstTensorHandle managedInputToInputWeights(m_CifgParameters.m_InputToInputWeights);
420 ManagedConstTensorHandle managedRecurrentToInputWeights(m_CifgParameters.m_RecurrentToInputWeights);
421 ManagedConstTensorHandle managedInputGateBias(m_CifgParameters.m_InputGateBias);
422
423 // Projection parameters
424 ManagedConstTensorHandle managedProjectionWeights(m_ProjectionParameters.m_ProjectionWeights);
425 ManagedConstTensorHandle managedProjectionBias(m_ProjectionParameters.m_ProjectionBias);
426
427 // Peephole parameters
428 ManagedConstTensorHandle managedCellToInputWeights(m_PeepholeParameters.m_CellToInputWeights);
429 ManagedConstTensorHandle managedCellToForgetWeights(m_PeepholeParameters.m_CellToForgetWeights);
430 ManagedConstTensorHandle managedCellToOutputWeights(m_PeepholeParameters.m_CellToOutputWeights);
431
432 // Layer normalisation parameters
433 ManagedConstTensorHandle managedInputLayerNormWeights(m_LayerNormParameters.m_InputLayerNormWeights);
434 ManagedConstTensorHandle managedForgetLayerNormWeights(m_LayerNormParameters.m_ForgetLayerNormWeights);
435 ManagedConstTensorHandle managedCellLayerNormWeights(m_LayerNormParameters.m_CellLayerNormWeights);
436 ManagedConstTensorHandle managedOutputLayerNormWeights(m_LayerNormParameters.m_OutputLayerNormWeights);
437
438 // First add mandatory/basic parameters
439 if (m_BasicParameters.m_InputToForgetWeights != nullptr)
440 {
441 constTensors.emplace_back(ConstTensor(managedInputToForgetWeights.GetTensorInfo(),
442 managedInputToForgetWeights.Map()));
443 }
444 if (m_BasicParameters.m_InputToCellWeights != nullptr)
445 {
446 constTensors.emplace_back(ConstTensor(managedInputToCellWeights.GetTensorInfo(),
447 managedInputToCellWeights.Map()));
448 }
449 if (m_BasicParameters.m_InputToOutputWeights != nullptr)
450 {
451 constTensors.emplace_back(ConstTensor(managedInputToOutputWeights.GetTensorInfo(),
452 managedInputToOutputWeights.Map()));
453 }
454 if (m_BasicParameters.m_RecurrentToForgetWeights != nullptr)
455 {
456 constTensors.emplace_back(ConstTensor(
457 managedRecurrentToForgetWeights.GetTensorInfo(),
458 managedRecurrentToForgetWeights.Map()));
459 }
460 if (m_BasicParameters.m_RecurrentToCellWeights != nullptr)
461 {
462 constTensors.emplace_back(ConstTensor(
463 managedRecurrentToCellWeights.GetTensorInfo(),
464 managedRecurrentToCellWeights.Map()));
465 }
466 if (m_BasicParameters.m_RecurrentToOutputWeights != nullptr)
467 {
468 constTensors.emplace_back(ConstTensor(
469 managedRecurrentToOutputWeights.GetTensorInfo(),
470 managedRecurrentToOutputWeights.Map()));
471 }
472 if (m_BasicParameters.m_ForgetGateBias != nullptr)
473 {
474 constTensors.emplace_back(ConstTensor(managedForgetGateBias.GetTensorInfo(),
475 managedForgetGateBias.Map()));
476 }
477 if (m_BasicParameters.m_CellBias != nullptr)
478 {
479 constTensors.emplace_back(ConstTensor(managedCellBias.GetTensorInfo(),
480 managedCellBias.Map()));
481 }
482 if (m_BasicParameters.m_OutputGateBias != nullptr)
483 {
484 constTensors.emplace_back(ConstTensor(managedOutputGateBias.GetTensorInfo(),
485 managedOutputGateBias.Map()));
486 }
487
488 // Add cifg parameters
489 if (!descriptor.m_CifgEnabled)
490 {
491 if (m_CifgParameters.m_InputToInputWeights != nullptr)
492 {
493 constTensors.emplace_back(ConstTensor(managedInputToInputWeights.GetTensorInfo(),
494 managedInputToInputWeights.Map()));
495 }
496 if (m_CifgParameters.m_RecurrentToInputWeights != nullptr)
497 {
498 constTensors.emplace_back(ConstTensor(
499 managedRecurrentToInputWeights.GetTensorInfo(),
500 managedRecurrentToInputWeights.Map()));
501 }
502 if (m_CifgParameters.m_InputGateBias != nullptr)
503 {
504 constTensors.emplace_back(ConstTensor(managedInputGateBias.GetTensorInfo(),
505 managedInputGateBias.Map()));
506 }
507 }
508
509 // Add peephole parameters
510 if (descriptor.m_PeepholeEnabled)
511 {
512 if (!descriptor.m_CifgEnabled)
513 {
514 if (m_PeepholeParameters.m_CellToInputWeights != nullptr)
515 {
516 constTensors.emplace_back(ConstTensor(managedCellToInputWeights.GetTensorInfo(),
517 managedCellToInputWeights.Map()));
518 }
519 }
520 if (m_PeepholeParameters.m_CellToForgetWeights != nullptr)
521 {
522 constTensors.emplace_back(ConstTensor(managedCellToForgetWeights.GetTensorInfo(),
523 managedCellToForgetWeights.Map()));
524 }
525 if (m_PeepholeParameters.m_CellToOutputWeights != nullptr)
526 {
527 constTensors.emplace_back(ConstTensor(managedCellToOutputWeights.GetTensorInfo(),
528 managedCellToOutputWeights.Map()));
529 }
530 }
531
532 // Add projection parameters
533 if (descriptor.m_ProjectionEnabled)
534 {
535 if (m_ProjectionParameters.m_ProjectionWeights != nullptr)
536 {
537 constTensors.emplace_back(ConstTensor(managedProjectionWeights.GetTensorInfo(),
538 managedProjectionWeights.Map()));
539 }
540 if (m_ProjectionParameters.m_ProjectionBias != nullptr)
541 {
542 constTensors.emplace_back(ConstTensor(managedProjectionBias.GetTensorInfo(),
543 managedProjectionBias.Map()));
544 }
545 }
546
547 // Add norm parameters
548 if (descriptor.m_LayerNormEnabled)
549 {
550 if (!descriptor.m_CifgEnabled)
551 {
552 if (m_LayerNormParameters.m_InputLayerNormWeights != nullptr)
553 {
554 constTensors.emplace_back(ConstTensor(managedInputLayerNormWeights.GetTensorInfo(),
555 managedInputLayerNormWeights.Map()));
556 }
557 }
558 if (m_LayerNormParameters.m_ForgetLayerNormWeights != nullptr)
559 {
560 constTensors.emplace_back(ConstTensor(managedForgetLayerNormWeights.GetTensorInfo(),
561 managedForgetLayerNormWeights.Map()));
562 }
563 if (m_LayerNormParameters.m_CellLayerNormWeights != nullptr)
564 {
565 constTensors.emplace_back(ConstTensor(managedCellLayerNormWeights.GetTensorInfo(),
566 managedCellLayerNormWeights.Map()));
567 }
568 if (m_LayerNormParameters.m_OutputLayerNormWeights != nullptr)
569 {
570 constTensors.emplace_back(ConstTensor(managedOutputLayerNormWeights.GetTensorInfo(),
571 managedOutputLayerNormWeights.Map()));
572 }
573 }
574
575 strategy.ExecuteStrategy(this, GetParameters(), constTensors, GetName());
576}
577
578} // namespace armnn
#define CHECK_LOCATION()
A tensor defined by a TensorInfo (shape and data type) and an immutable backing store.
Definition Tensor.hpp:330
Base class for all ArmNN exceptions so that users can filter to just those.
std::vector< std::reference_wrapper< const std::shared_ptr< ConstTensorHandle > > > ImmutableConstantTensors
Definition INetwork.hpp:141
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const LstmDescriptor &param, const char *name)
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
const LstmDescriptor & GetParameters() const override
LstmOptCifgParameters m_CifgParameters
Definition LstmLayer.hpp:21
Layer::ImmutableConstantTensors GetConstantTensorsByRef() const override
Retrieve the handles to the constant values stored by the layer.
LstmOptProjectionParameters m_ProjectionParameters
Definition LstmLayer.hpp:22
LstmOptLayerNormParameters m_LayerNormParameters
Definition LstmLayer.hpp:24
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
LstmOptPeepholeParameters m_PeepholeParameters
Definition LstmLayer.hpp:23
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
LstmBasicParameters m_BasicParameters
Definition LstmLayer.hpp:20
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of LstmLayer.
LstmLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Definition LstmLayer.cpp:80
LstmLayer(const LstmDescriptor &param, const char *name)
Constructor to create a LstmLayer.
Definition LstmLayer.cpp:17
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the LSTM type.
Definition LstmLayer.cpp:22
const void * Map(bool blocking=true)
RAII Managed resource Unmaps MemoryArea once out of scope.
const TensorInfo & GetTensorInfo() const
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
const TensorShape & GetShape() const
Definition Tensor.hpp:193
Copyright (c) 2021 ARM Limited and Contributors.
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
Definition Types.hpp:494
armnn::TensorInfo GetTensorInfo(unsigned int numberOfBatches, unsigned int numberOfChannels, unsigned int height, unsigned int width, const armnn::DataLayout dataLayout, const armnn::DataType dataType)
An LstmDescriptor for the LstmLayer.
bool m_PeepholeEnabled
Enable/disable peephole.
bool m_LayerNormEnabled
Enable/disable layer normalization.
bool m_ProjectionEnabled
Enable/disable the projection layer.
bool m_CifgEnabled
Enable/disable cifg (coupled input & forget gate).
const ConstTensorHandle * m_OutputLayerNormWeights
const ConstTensorHandle * m_InputToOutputWeights
const ConstTensorHandle * m_InputLayerNormWeights
const ConstTensorHandle * m_CellToForgetWeights
const ConstTensorHandle * m_RecurrentToInputWeights
const ConstTensorHandle * m_ForgetGateBias
const ConstTensorHandle * m_ProjectionWeights
const ConstTensorHandle * m_InputGateBias
const ConstTensorHandle * m_RecurrentToOutputWeights
const ConstTensorHandle * m_OutputGateBias
const ConstTensorHandle * m_CellBias
const ConstTensorHandle * m_InputToCellWeights
const ConstTensorHandle * m_CellToInputWeights
const ConstTensorHandle * m_CellToOutputWeights
const ConstTensorHandle * m_InputToForgetWeights
const ConstTensorHandle * m_InputToInputWeights
const ConstTensorHandle * m_RecurrentToCellWeights
const ConstTensorHandle * m_ProjectionBias
const ConstTensorHandle * m_ForgetLayerNormWeights
const ConstTensorHandle * m_RecurrentToForgetWeights
const ConstTensorHandle * m_CellLayerNormWeights