ArmNN
 25.11
Loading...
Searching...
No Matches
LstmLayer Class Reference

This layer represents a LSTM operation. More...

#include <LstmLayer.hpp>

Inheritance diagram for LstmLayer:
[legend]
Collaboration diagram for LstmLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the LSTM type.
LstmLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of LstmLayer.
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer.
Public Member Functions inherited from LayerWithParameters< LstmDescriptor >
const LstmDescriptorGetParameters () const override
 If the layer has a descriptor return it.
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
const std::string & GetNameStr () const
const OutputHandlerGetOutputHandler (unsigned int i=0) const
OutputHandlerGetOutputHandler (unsigned int i=0)
ShapeInferenceMethod GetShapeInferenceMethod () const
bool GetAllowExpandedDims () const
const std::vector< InputSlot > & GetInputSlots () const
const std::vector< OutputSlot > & GetOutputSlots () const
std::vector< InputSlot >::iterator BeginInputSlots ()
std::vector< InputSlot >::iterator EndInputSlots ()
std::vector< OutputSlot >::iterator BeginOutputSlots ()
std::vector< OutputSlot >::iterator EndOutputSlots ()
bool IsOutputUnconnected ()
void ResetPriority () const
LayerPriority GetPriority () const
LayerType GetType () const override
 Returns the armnn::LayerType of this layer.
DataType GetDataType () const
const BackendIdGetBackendId () const
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer.
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
virtual void ReleaseConstantData ()
template<typename Op>
void OperateOnConstantTensors (Op op)
const char * GetName () const override
 Returns the name of the layer.
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots.
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots.
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index.
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index.
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index.
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index.
void SetGuid (LayerGuid guid)
LayerGuid GetGuid () const final
 Returns the unique id of the layer.
void AddRelatedLayerName (const std::string layerName)
const std::list< std::string > & GetRelatedLayerNames ()
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer.
Optional< BackendIdGetBackendHint () const
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
void SetAllowExpandedDims (bool allowExpandedDims)
template<typename T>
std::shared_ptr< T > GetAdditionalInformation () const
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)

Public Attributes

LstmBasicParameters m_BasicParameters
LstmOptCifgParameters m_CifgParameters
LstmOptProjectionParameters m_ProjectionParameters
LstmOptPeepholeParameters m_PeepholeParameters
LstmOptLayerNormParameters m_LayerNormParameters

Protected Member Functions

 LstmLayer (const LstmDescriptor &param, const char *name)
 Constructor to create a LstmLayer.
 ~LstmLayer ()=default
 Default destructor.
Layer::ImmutableConstantTensors GetConstantTensorsByRef () const override
 Retrieve the handles to the constant values stored by the layer.
Protected Member Functions inherited from LayerWithParameters< LstmDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const LstmDescriptor &param, const char *name)
 ~LayerWithParameters ()=default
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
Protected Member Functions inherited from Layer
virtual ~Layer ()=default
template<typename QueueDescriptor>
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
template<typename QueueDescriptor>
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
template<typename QueueDescriptor>
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
template<typename LayerType, typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
virtual ConstantTensors GetConstantTensorsByRef () override final
void SetAdditionalInfo (QueueDescriptor &descriptor) const
Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle.

Additional Inherited Members

Public Types inherited from LayerWithParameters< LstmDescriptor >
using DescriptorType
Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector<std::reference_wrapper<std::shared_ptr<ConstTensorHandle>>>
using ImmutableConstantTensors = std::vector<std::reference_wrapper<const std::shared_ptr<ConstTensorHandle>>>
Protected Attributes inherited from LayerWithParameters< LstmDescriptor >
LstmDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.).
Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
std::vector< OutputHandlerm_OutputHandlers
ShapeInferenceMethod m_ShapeInferenceMethod

Detailed Description

This layer represents a LSTM operation.

Definition at line 16 of file LstmLayer.hpp.

Constructor & Destructor Documentation

◆ LstmLayer()

LstmLayer ( const LstmDescriptor & param,
const char * name )
protected

Constructor to create a LstmLayer.

Parameters
[in]paramLstmDescriptor to configure the lstm operation.
[in]nameOptional name for the layer.

Definition at line 17 of file LstmLayer.cpp.

18 : LayerWithParameters(3, 4, LayerType::Lstm, param, name)
19{
20}

References LayerWithParameters< LstmDescriptor >::LayerWithParameters(), and armnn::Lstm.

Referenced by Clone().

◆ ~LstmLayer()

~LstmLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

LstmLayer * Clone ( Graph & graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 80 of file LstmLayer.cpp.

81{
82 auto layer = CloneBase<LstmLayer>(graph, m_Param, GetName());
83
84 layer->m_BasicParameters.m_InputToForgetWeights = m_BasicParameters.m_InputToForgetWeights ?
85 m_BasicParameters.m_InputToForgetWeights
86 : nullptr;
87 layer->m_BasicParameters.m_InputToCellWeights = m_BasicParameters.m_InputToCellWeights ?
88 m_BasicParameters.m_InputToCellWeights : nullptr;
89 layer->m_BasicParameters.m_InputToOutputWeights = m_BasicParameters.m_InputToOutputWeights ?
90 m_BasicParameters.m_InputToOutputWeights : nullptr;
91 layer->m_BasicParameters.m_RecurrentToForgetWeights = m_BasicParameters.m_RecurrentToForgetWeights ?
92 m_BasicParameters.m_RecurrentToForgetWeights : nullptr;
93 layer->m_BasicParameters.m_RecurrentToCellWeights = m_BasicParameters.m_RecurrentToCellWeights ?
94 m_BasicParameters.m_RecurrentToCellWeights : nullptr;
95 layer->m_BasicParameters.m_RecurrentToOutputWeights = m_BasicParameters.m_RecurrentToOutputWeights ?
96 m_BasicParameters.m_RecurrentToOutputWeights : nullptr;
97 layer->m_BasicParameters.m_ForgetGateBias = m_BasicParameters.m_ForgetGateBias ?
98 m_BasicParameters.m_ForgetGateBias : nullptr;
99 layer->m_BasicParameters.m_CellBias = m_BasicParameters.m_CellBias ?
100 m_BasicParameters.m_CellBias : nullptr;
101 layer->m_BasicParameters.m_OutputGateBias = m_BasicParameters.m_OutputGateBias ?
102 m_BasicParameters.m_OutputGateBias : nullptr;
103
104 if (!m_Param.m_CifgEnabled)
105 {
106 layer->m_CifgParameters.m_InputToInputWeights = m_CifgParameters.m_InputToInputWeights ?
107 m_CifgParameters.m_InputToInputWeights : nullptr;
108 layer->m_CifgParameters.m_RecurrentToInputWeights = m_CifgParameters.m_RecurrentToInputWeights ?
109 m_CifgParameters.m_RecurrentToInputWeights : nullptr;
110 layer->m_CifgParameters.m_InputGateBias = m_CifgParameters.m_InputGateBias ?
111 m_CifgParameters.m_InputGateBias : nullptr;
112 }
113
114 if (m_Param.m_ProjectionEnabled)
115 {
116 layer->m_ProjectionParameters.m_ProjectionWeights = m_ProjectionParameters.m_ProjectionWeights ?
117 m_ProjectionParameters.m_ProjectionWeights : nullptr;
118 layer->m_ProjectionParameters.m_ProjectionBias = m_ProjectionParameters.m_ProjectionBias ?
119 m_ProjectionParameters.m_ProjectionBias : nullptr;
120 }
121
122 if (m_Param.m_PeepholeEnabled)
123 {
124 if (!m_Param.m_CifgEnabled)
125 {
126 layer->m_PeepholeParameters.m_CellToInputWeights = m_PeepholeParameters.m_CellToInputWeights ?
127 m_PeepholeParameters.m_CellToInputWeights : nullptr;
128 }
129 layer->m_PeepholeParameters.m_CellToForgetWeights = m_PeepholeParameters.m_CellToForgetWeights ?
130 m_PeepholeParameters.m_CellToForgetWeights : nullptr;
131 layer->m_PeepholeParameters.m_CellToOutputWeights = m_PeepholeParameters.m_CellToOutputWeights ?
132 m_PeepholeParameters.m_CellToOutputWeights : nullptr;
133 }
134
135 if (m_Param.m_LayerNormEnabled)
136 {
137 layer->m_LayerNormParameters.m_InputLayerNormWeights = m_LayerNormParameters.m_InputLayerNormWeights ?
138 m_LayerNormParameters.m_InputLayerNormWeights : nullptr;
139 layer->m_LayerNormParameters.m_ForgetLayerNormWeights = m_LayerNormParameters.m_ForgetLayerNormWeights ?
140 m_LayerNormParameters.m_ForgetLayerNormWeights : nullptr;
141 layer->m_LayerNormParameters.m_CellLayerNormWeights = m_LayerNormParameters.m_CellLayerNormWeights ?
142 m_LayerNormParameters.m_CellLayerNormWeights : nullptr;
143 layer->m_LayerNormParameters.m_OutputLayerNormWeights = m_LayerNormParameters.m_OutputLayerNormWeights ?
144 m_LayerNormParameters.m_OutputLayerNormWeights : nullptr;
145 }
146
147 return std::move(layer);
148}

References Layer::CloneBase(), Layer::GetName(), LstmLayer(), m_BasicParameters, m_CifgParameters, m_LayerNormParameters, LayerWithParameters< LstmDescriptor >::m_Param, m_PeepholeParameters, and m_ProjectionParameters.

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory & factory) const
overridevirtual

Makes a workload for the LSTM type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 22 of file LstmLayer.cpp.

23{
24 LstmQueueDescriptor descriptor;
25
26 // Basic parameters
27 descriptor.m_InputToForgetWeights = m_BasicParameters.m_InputToForgetWeights.get();
28 descriptor.m_InputToCellWeights = m_BasicParameters.m_InputToCellWeights.get();
29 descriptor.m_InputToOutputWeights = m_BasicParameters.m_InputToOutputWeights.get();
30 descriptor.m_RecurrentToForgetWeights = m_BasicParameters.m_RecurrentToForgetWeights.get();
31 descriptor.m_RecurrentToCellWeights = m_BasicParameters.m_RecurrentToCellWeights.get();
32 descriptor.m_RecurrentToOutputWeights = m_BasicParameters.m_RecurrentToOutputWeights.get();
33 descriptor.m_ForgetGateBias = m_BasicParameters.m_ForgetGateBias.get();
34 descriptor.m_CellBias = m_BasicParameters.m_CellBias.get();
35 descriptor.m_OutputGateBias = m_BasicParameters.m_OutputGateBias.get();
36
37 // Cifg parameters
38 if (!m_Param.m_CifgEnabled)
39 {
40 descriptor.m_InputToInputWeights = m_CifgParameters.m_InputToInputWeights.get();
41 descriptor.m_RecurrentToInputWeights = m_CifgParameters.m_RecurrentToInputWeights.get();
42 descriptor.m_InputGateBias = m_CifgParameters.m_InputGateBias.get();
43 }
44
45 // Projection parameters
46 if (m_Param.m_ProjectionEnabled)
47 {
48 descriptor.m_ProjectionWeights = m_ProjectionParameters.m_ProjectionWeights.get();
49 descriptor.m_ProjectionBias = m_ProjectionParameters.m_ProjectionBias.get();
50 }
51
52 // Peephole parameters
53 if (m_Param.m_PeepholeEnabled)
54 {
55 if (!m_Param.m_CifgEnabled)
56 {
57 descriptor.m_CellToInputWeights = m_PeepholeParameters.m_CellToInputWeights.get();
58 }
59 descriptor.m_CellToForgetWeights = m_PeepholeParameters.m_CellToForgetWeights.get();
60 descriptor.m_CellToOutputWeights = m_PeepholeParameters.m_CellToOutputWeights.get();
61 }
62
63 // Layer normalisation parameters
64 if(m_Param.m_LayerNormEnabled)
65 {
66 if (!m_Param.m_CifgEnabled)
67 {
68 descriptor.m_InputLayerNormWeights = m_LayerNormParameters.m_InputLayerNormWeights.get();
69 }
70 descriptor.m_ForgetLayerNormWeights = m_LayerNormParameters.m_ForgetLayerNormWeights.get();
71 descriptor.m_CellLayerNormWeights = m_LayerNormParameters.m_CellLayerNormWeights.get();
72 descriptor.m_OutputLayerNormWeights = m_LayerNormParameters.m_OutputLayerNormWeights.get();
73 }
74
75 SetAdditionalInfo(descriptor);
76
77 return factory.CreateWorkload(LayerType::Lstm, descriptor, PrepInfoAndDesc(descriptor));
78}

References IWorkloadFactory::CreateWorkload(), armnn::Lstm, m_BasicParameters, LstmQueueDescriptor::m_CellBias, LstmQueueDescriptor::m_CellLayerNormWeights, LstmQueueDescriptor::m_CellToForgetWeights, LstmQueueDescriptor::m_CellToInputWeights, LstmQueueDescriptor::m_CellToOutputWeights, m_CifgParameters, LstmQueueDescriptor::m_ForgetGateBias, LstmQueueDescriptor::m_ForgetLayerNormWeights, LstmQueueDescriptor::m_InputGateBias, LstmQueueDescriptor::m_InputLayerNormWeights, LstmQueueDescriptor::m_InputToCellWeights, LstmQueueDescriptor::m_InputToForgetWeights, LstmQueueDescriptor::m_InputToInputWeights, LstmQueueDescriptor::m_InputToOutputWeights, m_LayerNormParameters, LstmQueueDescriptor::m_OutputGateBias, LstmQueueDescriptor::m_OutputLayerNormWeights, LayerWithParameters< LstmDescriptor >::m_Param, m_PeepholeParameters, LstmQueueDescriptor::m_ProjectionBias, m_ProjectionParameters, LstmQueueDescriptor::m_ProjectionWeights, LstmQueueDescriptor::m_RecurrentToCellWeights, LstmQueueDescriptor::m_RecurrentToForgetWeights, LstmQueueDescriptor::m_RecurrentToInputWeights, LstmQueueDescriptor::m_RecurrentToOutputWeights, LayerWithParameters< LstmDescriptor >::PrepInfoAndDesc(), and Layer::SetAdditionalInfo().

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy & strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from LayerWithParameters< LstmDescriptor >.

Definition at line 402 of file LstmLayer.cpp.

403{
404 std::vector<ConstTensor> constTensors;
405
406 LstmDescriptor descriptor = GetParameters();
407
408 ManagedConstTensorHandle managedInputToForgetWeights(m_BasicParameters.m_InputToForgetWeights);
409 ManagedConstTensorHandle managedInputToCellWeights(m_BasicParameters.m_InputToCellWeights);
410 ManagedConstTensorHandle managedInputToOutputWeights(m_BasicParameters.m_InputToOutputWeights);
411 ManagedConstTensorHandle managedRecurrentToForgetWeights(m_BasicParameters.m_RecurrentToForgetWeights);
412 ManagedConstTensorHandle managedRecurrentToCellWeights(m_BasicParameters.m_RecurrentToCellWeights);
413 ManagedConstTensorHandle managedRecurrentToOutputWeights(m_BasicParameters.m_RecurrentToOutputWeights);
414 ManagedConstTensorHandle managedForgetGateBias(m_BasicParameters.m_ForgetGateBias);
415 ManagedConstTensorHandle managedCellBias(m_BasicParameters.m_CellBias);
416 ManagedConstTensorHandle managedOutputGateBias(m_BasicParameters.m_OutputGateBias);
417
418 // Cifg parameters
419 ManagedConstTensorHandle managedInputToInputWeights(m_CifgParameters.m_InputToInputWeights);
420 ManagedConstTensorHandle managedRecurrentToInputWeights(m_CifgParameters.m_RecurrentToInputWeights);
421 ManagedConstTensorHandle managedInputGateBias(m_CifgParameters.m_InputGateBias);
422
423 // Projection parameters
424 ManagedConstTensorHandle managedProjectionWeights(m_ProjectionParameters.m_ProjectionWeights);
425 ManagedConstTensorHandle managedProjectionBias(m_ProjectionParameters.m_ProjectionBias);
426
427 // Peephole parameters
428 ManagedConstTensorHandle managedCellToInputWeights(m_PeepholeParameters.m_CellToInputWeights);
429 ManagedConstTensorHandle managedCellToForgetWeights(m_PeepholeParameters.m_CellToForgetWeights);
430 ManagedConstTensorHandle managedCellToOutputWeights(m_PeepholeParameters.m_CellToOutputWeights);
431
432 // Layer normalisation parameters
433 ManagedConstTensorHandle managedInputLayerNormWeights(m_LayerNormParameters.m_InputLayerNormWeights);
434 ManagedConstTensorHandle managedForgetLayerNormWeights(m_LayerNormParameters.m_ForgetLayerNormWeights);
435 ManagedConstTensorHandle managedCellLayerNormWeights(m_LayerNormParameters.m_CellLayerNormWeights);
436 ManagedConstTensorHandle managedOutputLayerNormWeights(m_LayerNormParameters.m_OutputLayerNormWeights);
437
438 // First add mandatory/basic parameters
439 if (m_BasicParameters.m_InputToForgetWeights != nullptr)
440 {
441 constTensors.emplace_back(ConstTensor(managedInputToForgetWeights.GetTensorInfo(),
442 managedInputToForgetWeights.Map()));
443 }
444 if (m_BasicParameters.m_InputToCellWeights != nullptr)
445 {
446 constTensors.emplace_back(ConstTensor(managedInputToCellWeights.GetTensorInfo(),
447 managedInputToCellWeights.Map()));
448 }
449 if (m_BasicParameters.m_InputToOutputWeights != nullptr)
450 {
451 constTensors.emplace_back(ConstTensor(managedInputToOutputWeights.GetTensorInfo(),
452 managedInputToOutputWeights.Map()));
453 }
454 if (m_BasicParameters.m_RecurrentToForgetWeights != nullptr)
455 {
456 constTensors.emplace_back(ConstTensor(
457 managedRecurrentToForgetWeights.GetTensorInfo(),
458 managedRecurrentToForgetWeights.Map()));
459 }
460 if (m_BasicParameters.m_RecurrentToCellWeights != nullptr)
461 {
462 constTensors.emplace_back(ConstTensor(
463 managedRecurrentToCellWeights.GetTensorInfo(),
464 managedRecurrentToCellWeights.Map()));
465 }
466 if (m_BasicParameters.m_RecurrentToOutputWeights != nullptr)
467 {
468 constTensors.emplace_back(ConstTensor(
469 managedRecurrentToOutputWeights.GetTensorInfo(),
470 managedRecurrentToOutputWeights.Map()));
471 }
472 if (m_BasicParameters.m_ForgetGateBias != nullptr)
473 {
474 constTensors.emplace_back(ConstTensor(managedForgetGateBias.GetTensorInfo(),
475 managedForgetGateBias.Map()));
476 }
477 if (m_BasicParameters.m_CellBias != nullptr)
478 {
479 constTensors.emplace_back(ConstTensor(managedCellBias.GetTensorInfo(),
480 managedCellBias.Map()));
481 }
482 if (m_BasicParameters.m_OutputGateBias != nullptr)
483 {
484 constTensors.emplace_back(ConstTensor(managedOutputGateBias.GetTensorInfo(),
485 managedOutputGateBias.Map()));
486 }
487
488 // Add cifg parameters
489 if (!descriptor.m_CifgEnabled)
490 {
491 if (m_CifgParameters.m_InputToInputWeights != nullptr)
492 {
493 constTensors.emplace_back(ConstTensor(managedInputToInputWeights.GetTensorInfo(),
494 managedInputToInputWeights.Map()));
495 }
496 if (m_CifgParameters.m_RecurrentToInputWeights != nullptr)
497 {
498 constTensors.emplace_back(ConstTensor(
499 managedRecurrentToInputWeights.GetTensorInfo(),
500 managedRecurrentToInputWeights.Map()));
501 }
502 if (m_CifgParameters.m_InputGateBias != nullptr)
503 {
504 constTensors.emplace_back(ConstTensor(managedInputGateBias.GetTensorInfo(),
505 managedInputGateBias.Map()));
506 }
507 }
508
509 // Add peephole parameters
510 if (descriptor.m_PeepholeEnabled)
511 {
512 if (!descriptor.m_CifgEnabled)
513 {
514 if (m_PeepholeParameters.m_CellToInputWeights != nullptr)
515 {
516 constTensors.emplace_back(ConstTensor(managedCellToInputWeights.GetTensorInfo(),
517 managedCellToInputWeights.Map()));
518 }
519 }
520 if (m_PeepholeParameters.m_CellToForgetWeights != nullptr)
521 {
522 constTensors.emplace_back(ConstTensor(managedCellToForgetWeights.GetTensorInfo(),
523 managedCellToForgetWeights.Map()));
524 }
525 if (m_PeepholeParameters.m_CellToOutputWeights != nullptr)
526 {
527 constTensors.emplace_back(ConstTensor(managedCellToOutputWeights.GetTensorInfo(),
528 managedCellToOutputWeights.Map()));
529 }
530 }
531
532 // Add projection parameters
533 if (descriptor.m_ProjectionEnabled)
534 {
535 if (m_ProjectionParameters.m_ProjectionWeights != nullptr)
536 {
537 constTensors.emplace_back(ConstTensor(managedProjectionWeights.GetTensorInfo(),
538 managedProjectionWeights.Map()));
539 }
540 if (m_ProjectionParameters.m_ProjectionBias != nullptr)
541 {
542 constTensors.emplace_back(ConstTensor(managedProjectionBias.GetTensorInfo(),
543 managedProjectionBias.Map()));
544 }
545 }
546
547 // Add norm parameters
548 if (descriptor.m_LayerNormEnabled)
549 {
550 if (!descriptor.m_CifgEnabled)
551 {
552 if (m_LayerNormParameters.m_InputLayerNormWeights != nullptr)
553 {
554 constTensors.emplace_back(ConstTensor(managedInputLayerNormWeights.GetTensorInfo(),
555 managedInputLayerNormWeights.Map()));
556 }
557 }
558 if (m_LayerNormParameters.m_ForgetLayerNormWeights != nullptr)
559 {
560 constTensors.emplace_back(ConstTensor(managedForgetLayerNormWeights.GetTensorInfo(),
561 managedForgetLayerNormWeights.Map()));
562 }
563 if (m_LayerNormParameters.m_CellLayerNormWeights != nullptr)
564 {
565 constTensors.emplace_back(ConstTensor(managedCellLayerNormWeights.GetTensorInfo(),
566 managedCellLayerNormWeights.Map()));
567 }
568 if (m_LayerNormParameters.m_OutputLayerNormWeights != nullptr)
569 {
570 constTensors.emplace_back(ConstTensor(managedOutputLayerNormWeights.GetTensorInfo(),
571 managedOutputLayerNormWeights.Map()));
572 }
573 }
574
575 strategy.ExecuteStrategy(this, GetParameters(), constTensors, GetName());
576}

References IStrategy::ExecuteStrategy(), Layer::GetName(), LayerWithParameters< LstmDescriptor >::GetParameters(), ManagedConstTensorHandle::GetTensorInfo(), m_BasicParameters, LstmDescriptor::m_CifgEnabled, m_CifgParameters, LstmDescriptor::m_LayerNormEnabled, m_LayerNormParameters, LstmDescriptor::m_PeepholeEnabled, m_PeepholeParameters, LstmDescriptor::m_ProjectionEnabled, m_ProjectionParameters, and ManagedConstTensorHandle::Map().

◆ GetConstantTensorsByRef()

Layer::ImmutableConstantTensors GetConstantTensorsByRef ( ) const
overrideprotectedvirtual

Retrieve the handles to the constant values stored by the layer.

Returns
A vector of the constant tensors stored by this layer.

Reimplemented from Layer.

Definition at line 368 of file LstmLayer.cpp.

369{
370 // For API stability DO NOT ALTER order and add new members to the end of vector
371 return {m_BasicParameters.m_InputToForgetWeights,
372 m_BasicParameters.m_InputToCellWeights,
373 m_BasicParameters.m_InputToOutputWeights,
374 m_BasicParameters.m_RecurrentToForgetWeights,
375 m_BasicParameters.m_RecurrentToCellWeights,
376 m_BasicParameters.m_RecurrentToOutputWeights,
377 m_BasicParameters.m_ForgetGateBias,
378 m_BasicParameters.m_CellBias,
379 m_BasicParameters.m_OutputGateBias,
380
381 // Cifg parameters
382 m_CifgParameters.m_InputToInputWeights,
383 m_CifgParameters.m_RecurrentToInputWeights,
384 m_CifgParameters.m_InputGateBias,
385
386 // Projection parameters
387 m_ProjectionParameters.m_ProjectionWeights,
388 m_ProjectionParameters.m_ProjectionBias,
389
390 // Peephole parameters
391 m_PeepholeParameters.m_CellToInputWeights,
392 m_PeepholeParameters.m_CellToForgetWeights,
393 m_PeepholeParameters.m_CellToOutputWeights,
394
395 // Layer normalisation parameters
396 m_LayerNormParameters.m_InputLayerNormWeights,
397 m_LayerNormParameters.m_ForgetLayerNormWeights,
398 m_LayerNormParameters.m_CellLayerNormWeights,
399 m_LayerNormParameters.m_OutputLayerNormWeights};
400}

References m_BasicParameters, m_CifgParameters, m_LayerNormParameters, m_PeepholeParameters, and m_ProjectionParameters.

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > & inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 150 of file LstmLayer.cpp.

151{
152 if (inputShapes.size() != 3)
153 {
154 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
155 "\" - should be \"3\".");
156 }
157
158 // Get input values for validation
159 unsigned int batchSize = inputShapes[0][0];
160 unsigned int outputSize = inputShapes[1][1];
161 unsigned int numUnits = inputShapes[2][1];
162
163 std::vector<TensorShape> outShapes;
164 outShapes.push_back(TensorShape({batchSize, numUnits * (m_Param.m_CifgEnabled ? 3 : 4)}));
165 outShapes.push_back(TensorShape({batchSize, outputSize}));
166 outShapes.push_back(TensorShape({batchSize, numUnits}));
167 outShapes.push_back(TensorShape({batchSize, outputSize}));
168
169 return outShapes;
170}

References LayerWithParameters< LstmDescriptor >::m_Param.

Referenced by ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of LstmLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 172 of file LstmLayer.cpp.

173{
174 VerifyLayerConnections(3, CHECK_LOCATION());
175
176 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
177
178 VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
179
180 auto inferredShapes = InferOutputShapes( {
181 GetInputSlot(0).GetTensorInfo().GetShape(),
182 GetInputSlot(1).GetTensorInfo().GetShape(),
183 GetInputSlot(2).GetTensorInfo().GetShape()
184 });
185
186 if (inferredShapes.size() != 4)
187 {
188 throw armnn::Exception("inferredShapes has "
189 + std::to_string(inferredShapes.size()) +
190 " element(s) - should only have 4.");
191 }
192
193 // Check if the weights are nullptr
194 if (!m_BasicParameters.m_InputToForgetWeights)
195 {
196 throw armnn::NullPointerException("LstmLayer: "
197 "m_BasicParameters.m_InputToForgetWeights should not be null.");
198 }
199
200 if (!m_BasicParameters.m_InputToCellWeights)
201 {
202 throw armnn::NullPointerException("LstmLayer: "
203 "m_BasicParameters.m_InputToCellWeights should not be null.");
204 }
205
206 if (!m_BasicParameters.m_InputToOutputWeights)
207 {
208 throw armnn::NullPointerException("LstmLayer: "
209 "m_BasicParameters.m_InputToOutputWeights should not be null.");
210 }
211
212 if (!m_BasicParameters.m_RecurrentToForgetWeights)
213 {
214 throw armnn::NullPointerException("LstmLayer: "
215 "m_BasicParameters.m_RecurrentToForgetWeights should not be null.");
216 }
217
218 if (!m_BasicParameters.m_RecurrentToCellWeights)
219 {
220 throw armnn::NullPointerException("LstmLayer: "
221 "m_BasicParameters.m_RecurrentToCellWeights should not be null.");
222 }
223
224 if (!m_BasicParameters.m_RecurrentToOutputWeights)
225 {
226 throw armnn::NullPointerException("LstmLayer: "
227 "m_BasicParameters.m_RecurrentToOutputWeights should not be null.");
228 }
229
230 if (!m_BasicParameters.m_ForgetGateBias)
231 {
232 throw armnn::NullPointerException("LstmLayer: "
233 "m_BasicParameters.m_ForgetGateBias should not be null.");
234 }
235
236 if (!m_BasicParameters.m_CellBias)
237 {
238 throw armnn::NullPointerException("LstmLayer: "
239 "m_BasicParameters.m_CellBias should not be null.");
240 }
241
242 if (!m_BasicParameters.m_OutputGateBias)
243 {
244 throw armnn::NullPointerException("LstmLayer: "
245 "m_BasicParameters.m_OutputGateBias should not be null.");
246 }
247
248 if (!m_Param.m_CifgEnabled)
249 {
250 if (!m_CifgParameters.m_InputToInputWeights)
251 {
252 throw armnn::NullPointerException("LstmLayer: "
253 "m_CifgParameters.m_InputToInputWeights should not be null.");
254 }
255
256 if (!m_CifgParameters.m_RecurrentToInputWeights)
257 {
258 throw armnn::NullPointerException("LstmLayer: "
259 "m_CifgParameters.m_RecurrentToInputWeights should not be null.");
260 }
261
262 if (!m_CifgParameters.m_InputGateBias)
263 {
264 throw armnn::NullPointerException("LstmLayer: "
265 "m_CifgParameters.m_InputGateBias should not be null.");
266 }
267
268 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "LstmLayer");
269 }
270 else
271 {
272 if (m_CifgParameters.m_InputToInputWeights)
273 {
274 throw armnn::Exception("LstmLayer: "
275 "m_CifgParameters.m_InputToInputWeights should not have a value "
276 "when CIFG is enabled.");
277 }
278
279 if (m_CifgParameters.m_RecurrentToInputWeights)
280 {
281 throw armnn::Exception("LstmLayer: "
282 "m_CifgParameters.m_RecurrentToInputWeights should not have a value "
283 "when CIFG is enabled.");
284 }
285
286 if (m_CifgParameters.m_InputGateBias)
287 {
288 throw armnn::Exception("LstmLayer: "
289 "m_CifgParameters.m_InputGateBias should not have a value "
290 "when CIFG is enabled.");
291 }
292
293 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "LstmLayer");
294 }
295
296 if (m_Param.m_ProjectionEnabled)
297 {
298 if (!m_ProjectionParameters.m_ProjectionWeights)
299 {
300 throw armnn::NullPointerException("LstmLayer: "
301 "m_ProjectionParameters.m_ProjectionWeights should not be null.");
302 }
303 }
304
305 if (m_Param.m_PeepholeEnabled)
306 {
307 if (!m_Param.m_CifgEnabled)
308 {
309 if (!m_PeepholeParameters.m_CellToInputWeights)
310 {
311 throw armnn::NullPointerException("LstmLayer: "
312 "m_PeepholeParameters.m_CellToInputWeights should not be null "
313 "when Peephole is enabled and CIFG is disabled.");
314 }
315 }
316
317 if (!m_PeepholeParameters.m_CellToForgetWeights)
318 {
319 throw armnn::NullPointerException("LstmLayer: "
320 "m_PeepholeParameters.m_CellToForgetWeights should not be null.");
321 }
322
323 if (!m_PeepholeParameters.m_CellToOutputWeights)
324 {
325 throw armnn::NullPointerException("LstmLayer: "
326 "m_PeepholeParameters.m_CellToOutputWeights should not be null.");
327 }
328 }
329
330 ValidateAndCopyShape(
331 GetOutputSlot(1).GetTensorInfo().GetShape(), inferredShapes[1], m_ShapeInferenceMethod, "LstmLayer", 1);
332 ValidateAndCopyShape(
333 GetOutputSlot(2).GetTensorInfo().GetShape(), inferredShapes[2], m_ShapeInferenceMethod, "LstmLayer", 2);
334 ValidateAndCopyShape(
335 GetOutputSlot(3).GetTensorInfo().GetShape(), inferredShapes[3], m_ShapeInferenceMethod, "LstmLayer", 3);
336
337 if (m_Param.m_LayerNormEnabled)
338 {
339 if(!m_Param.m_CifgEnabled)
340 {
341 if (!m_LayerNormParameters.m_InputLayerNormWeights)
342 {
343 throw armnn::NullPointerException("LstmLayer: "
344 "m_LayerNormParameters.m_inputLayerNormWeights should not be null.");
345 }
346 }
347
348 if (!m_LayerNormParameters.m_ForgetLayerNormWeights)
349 {
350 throw armnn::NullPointerException("LstmLayer: "
351 "m_LayerNormParameters.m_forgetLayerNormWeights should not be null.");
352 }
353
354 if (!m_LayerNormParameters.m_CellLayerNormWeights)
355 {
356 throw armnn::NullPointerException("LstmLayer: "
357 "m_LayerNormParameters.m_cellLayerNormWeights should not be null.");
358 }
359
360 if (!m_LayerNormParameters.m_OutputLayerNormWeights)
361 {
362 throw armnn::NullPointerException("LstmLayer: "
363 "m_LayerNormParameters.m_outputLayerNormWeights should not be null.");
364 }
365 }
366}
#define CHECK_LOCATION()
armnn::TensorInfo GetTensorInfo(unsigned int numberOfBatches, unsigned int numberOfChannels, unsigned int height, unsigned int width, const armnn::DataLayout dataLayout, const armnn::DataType dataType)

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), armnnUtils::GetTensorInfo(), InferOutputShapes(), m_BasicParameters, m_CifgParameters, m_LayerNormParameters, LayerWithParameters< LstmDescriptor >::m_Param, m_PeepholeParameters, m_ProjectionParameters, Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().

Member Data Documentation

◆ m_BasicParameters

◆ m_CifgParameters

◆ m_LayerNormParameters

◆ m_PeepholeParameters

◆ m_ProjectionParameters


The documentation for this class was generated from the following files: