ArmNN
 25.11
Loading...
Searching...
No Matches
NeonBatchToSpaceNdWorkload.cpp
Go to the documentation of this file.
1//
2// Copyright © 2020-2023 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7
9
10namespace armnn
11{
12
13using namespace armcomputetensorutils;
14
15arm_compute::Status NeonBatchToSpaceNdWorkloadValidate(const TensorInfo& input,
16 const TensorInfo& output,
17 const BatchToSpaceNdDescriptor& descriptor)
18{
19 arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
20 arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
21
22 arm_compute::Status statusBatchToSpace = arm_compute::Status(arm_compute::ErrorCode::OK);
23 arm_compute::Status statusReshapeInput = arm_compute::Status(arm_compute::ErrorCode::OK);
24 arm_compute::Status statusReshapeOutput = arm_compute::Status(arm_compute::ErrorCode::OK);
25
26 arm_compute::TensorInfo aclReshapeInputInfo = aclInputInfo;
27 arm_compute::TensorInfo aclReshapeOutputInfo = aclOutputInfo;
28
29 // When a spacial dimension is missing (rank=3) set W to 1
30 const unsigned int rank = input.GetNumDimensions();
31 if (rank == 3)
32 {
33 const arm_compute::TensorShape inputShape = aclInputInfo.tensor_shape();
34 const arm_compute::TensorShape outputShape = aclOutputInfo.tensor_shape();
35
36 if (descriptor.m_DataLayout == armnn::DataLayout::NHWC)
37 {
38 // In ACL dimensions are right to left: C, W, H, N
39 aclReshapeInputInfo.set_tensor_shape({inputShape.x(), 1, inputShape.y(), inputShape.z()});
40 aclReshapeOutputInfo.set_tensor_shape({outputShape.x(), 1, outputShape.y(), outputShape.z()});
41 }
42 else if (descriptor.m_DataLayout == armnn::DataLayout::NCHW)
43 {
44 // In ACL dimensions are right to left: W, H, C, N
45 aclReshapeInputInfo.set_tensor_shape({1, inputShape.x(), inputShape.y(), inputShape.z()});
46 aclReshapeOutputInfo.set_tensor_shape({1, outputShape.x(), outputShape.y(), outputShape.z()});
47 }
48 else
49 {
50 throw InvalidArgumentException("Unsupported or unknown DataLayout", CHECK_LOCATION());
51 }
52
53 statusReshapeInput = arm_compute::NEReshapeLayer::validate(&aclInputInfo, &aclReshapeInputInfo);
54 statusReshapeOutput = arm_compute::NEReshapeLayer::validate(&aclReshapeOutputInfo, &aclOutputInfo);
55 }
56
57 // ArmNN blockShape is [H, W] ACl asks for W, H
58 int32_t blockHeight = armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[0]);
59 int32_t blockWidth = (rank == 3) ? 1 : armnn::numeric_cast<int32_t>(descriptor.m_BlockShape[1]);
60
61 const arm_compute::CropInfo cropInfo = BuildArmComputeCropInfo(descriptor, rank);
62
63 statusBatchToSpace = arm_compute::NEBatchToSpaceLayer::validate(rank == 3 ? &aclReshapeInputInfo : &aclInputInfo,
64 blockWidth,
65 blockHeight,
66 rank == 3 ? &aclReshapeOutputInfo : &aclOutputInfo,
67 cropInfo);
68
69 if (statusReshapeInput.error_code() == arm_compute::ErrorCode::OK &&
70 statusReshapeOutput.error_code() == arm_compute::ErrorCode::OK &&
71 statusBatchToSpace.error_code() == arm_compute::ErrorCode::OK)
72 {
73 return arm_compute::Status(arm_compute::ErrorCode::OK,
74 "All BatchToSpace layers validate status OK.");
75 }
76 else
77 {
78 return arm_compute::Status(arm_compute::ErrorCode::RUNTIME_ERROR,
79 "BatchToSpace layer validate status failed."
80 + statusBatchToSpace.error_description()
81 + statusReshapeInput.error_description()
82 + statusReshapeOutput.error_description());
83 }
84}
85
87 const WorkloadInfo& info)
89{
90 // Report Profiling Details
91 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonBatchToSpaceWorkload_Construct",
92 descriptor.m_Parameters,
93 info,
94 this->GetGuid());
95
96 m_Data.ValidateInputsOutputs("NeonBatchToSpaceNdWorkload", 1, 1);
97
98 arm_compute::ITensor& input = PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Inputs[0])->GetTensor();
99 arm_compute::ITensor& output = PolymorphicPointerDowncast<IAclTensorHandle>(m_Data.m_Outputs[0])->GetTensor();
100
101 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
102 input.info()->set_data_layout(aclDataLayout);
103 output.info()->set_data_layout(aclDataLayout);
104
105 arm_compute::TensorInfo aclReshapeInputInfo = BuildArmComputeTensorInfo(info.m_InputTensorInfos[0],
106 m_Data.m_Parameters.m_DataLayout);
107 arm_compute::TensorInfo aclReshapeOutputInfo = BuildArmComputeTensorInfo(info.m_OutputTensorInfos[0],
108 m_Data.m_Parameters.m_DataLayout);
109
110 const unsigned int rank = info.m_InputTensorInfos[0].GetNumDimensions();
111 if (rank == 3)
112 {
113 const arm_compute::TensorShape inputShape = input.info()->tensor_shape();
114 const arm_compute::TensorShape outputShape = output.info()->tensor_shape();
115
116 // When a spacial dimension is missing set W to 1
117 if (m_Data.m_Parameters.m_DataLayout == armnn::DataLayout::NHWC)
118 {
119 // In ACL dimensions are right to left: C, W, H, N
120 aclReshapeInputInfo.set_tensor_shape({inputShape.x(), 1, inputShape.y(), inputShape.z()});
121 aclReshapeOutputInfo.set_tensor_shape({outputShape.x(), 1, outputShape.y(), outputShape.z()});
122 }
123 else if (m_Data.m_Parameters.m_DataLayout == armnn::DataLayout::NCHW)
124 {
125 // In ACL dimensions are right to left: W, H, C, N
126 aclReshapeInputInfo.set_tensor_shape({1, inputShape.x(), inputShape.y(), inputShape.z()});
127 aclReshapeOutputInfo.set_tensor_shape({1, outputShape.x(), outputShape.y(), outputShape.z()});
128 }
129 else
130 {
131 throw InvalidArgumentException("Unsupported or unknown DataLayout", CHECK_LOCATION());
132 }
133
134 m_ReshapeInputTensor.allocator()->init(aclReshapeInputInfo);
135 m_ReshapeOutputTensor.allocator()->init(aclReshapeOutputInfo);
136
137 InitialiseArmComputeTensorEmpty(m_ReshapeInputTensor);
138 InitialiseArmComputeTensorEmpty(m_ReshapeOutputTensor);
139
140 m_LayerReshapeInput.reset(new arm_compute::NEReshapeLayer());
141 m_LayerReshapeOutput.reset(new arm_compute::NEReshapeLayer());
142
143 m_LayerReshapeInput->configure(&input, &m_ReshapeInputTensor);
144 m_LayerReshapeOutput->configure(&m_ReshapeOutputTensor, &output);
145 }
146
147 // ArmNN blockShape is [H, W] ACl asks for W, H
148 int32_t blockHeight = armnn::numeric_cast<int32_t>(descriptor.m_Parameters.m_BlockShape[0]);
149 int32_t blockWidth = (rank == 3) ? 1 : armnn::numeric_cast<int32_t>(descriptor.m_Parameters.m_BlockShape[1]);
150
151 const arm_compute::CropInfo cropInfo = BuildArmComputeCropInfo(descriptor.m_Parameters, rank);
152
153 m_Layer.reset(new arm_compute::NEBatchToSpaceLayer());
154 m_Layer->configure(rank == 3 ? &m_ReshapeInputTensor : &input,
155 blockWidth,
156 blockHeight,
157 rank == 3 ? &m_ReshapeOutputTensor : &output,
158 cropInfo);
159 m_Layer->prepare();
160}
161
163{
164 ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonBatchToSpaceNdWorkload_Execute");
165 if (m_LayerReshapeInput)
166 {
167 m_LayerReshapeInput->run();
168 }
169 if (m_Layer)
170 {
171 m_Layer->run();
172 }
173 if (m_LayerReshapeOutput)
174 {
175 m_LayerReshapeOutput->run();
176 }
177}
178
179} //namespace armnn
#define CHECK_LOCATION()
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
NeonBaseWorkload(const BatchToSpaceNdQueueDescriptor &descriptor, const WorkloadInfo &info)
NeonBatchToSpaceNdWorkload(const BatchToSpaceNdQueueDescriptor &descriptor, const WorkloadInfo &info)
unsigned int GetNumDimensions() const
Definition Tensor.hpp:197
Copyright (c) 2021 ARM Limited and Contributors.
auto PolymorphicPointerDowncast(const SourceType &value)
Polymorphic downcast for shared pointers and build in pointers.
std::enable_if_t< std::is_unsigned< Source >::value &&std::is_unsigned< Dest >::value, Dest > numeric_cast(Source source)
arm_compute::Status NeonBatchToSpaceNdWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const BatchToSpaceNdDescriptor &descriptor)
A BatchToSpaceNdDescriptor for the BatchToSpaceNdLayer.
std::vector< unsigned int > m_BlockShape
Block shape values.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
Contains information about TensorInfos of a layer.