29 bool isFastMathEnabled,
32 const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.
m_DataLayout);
33 const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.
m_DataLayout);
34 arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.
m_DataLayout);
35 aclWeightsInfo.set_are_values_constant(weights.
IsConstant());
37 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.
m_DilationX,
40 arm_compute::TensorInfo aclBiasesInfo;
41 arm_compute::TensorInfo *optionalAclBiasesInfo =
nullptr;
47 return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
48 "ArmNN NeonConvolution2dWorkload has empty bias value."};
50 aclBiasesInfo = BuildArmComputeTensorInfo(biases.
value(), descriptor.
m_DataLayout);
51 aclBiasesInfo.set_are_values_constant(biases.
value().IsConstant());
52 optionalAclBiasesInfo = &aclBiasesInfo;
55 arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor);
58 activationDescriptor);
60 return arm_compute::NEConvolutionLayer::validate(&aclInputInfo,
62 optionalAclBiasesInfo,
65 arm_compute::WeightsInfo(),
74 std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager,
75 const bool isFastMathEnabled)
78 using arm_compute::NEConvolutionLayer;
80 uint32_t numInputs =
m_Data.m_Parameters.m_BiasEnabled ? 3: 2;
81 m_Data.ValidateInputsOutputs(
"NeonConvolution2dWorkload", numInputs, 1);
86 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(
m_Data.m_Parameters.m_DataLayout);
87 input.info()->set_data_layout(aclDataLayout);
88 output.info()->set_data_layout(aclDataLayout);
90 m_KernelTensor = std::make_unique<arm_compute::Tensor>();
91 BuildArmComputeTensor(*m_KernelTensor,
info.m_InputTensorInfos[1],
m_Data.m_Parameters.m_DataLayout);
92 m_KernelTensor->info()->set_are_values_constant(
info.m_InputTensorInfos[1].IsConstant());
93 if (
m_Data.m_Parameters.m_BiasEnabled)
95 m_BiasTensor = std::make_unique<arm_compute::Tensor>();
96 BuildArmComputeTensor(*m_BiasTensor,
info.m_InputTensorInfos[2],
m_Data.m_Parameters.m_DataLayout);
97 m_BiasTensor->info()->set_are_values_constant(
info.m_InputTensorInfos[2].IsConstant());
100 arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(
m_Data.m_Parameters);
102 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(
m_Data.m_Parameters.m_DilationX,
103 m_Data.m_Parameters.m_DilationY);
107 auto convolutionLayer = std::make_unique<arm_compute::NEConvolutionLayer>(memoryManager);
108 convolutionLayer->configure(&input,
109 m_KernelTensor.get(),
113 arm_compute::WeightsInfo(),
118 m_ConvolutionMethod =
119 convolutionLayer->get_convolution_method(input.info(),
120 m_KernelTensor->info(),
123 arm_compute::WeightsInfo(),
141 m_ConvolutionLayer.reset(convolutionLayer.release());
142 m_KernelTensorInfo =
info.m_InputTensorInfos[1];
144 if (
m_Data.m_Parameters.m_BiasEnabled)
146 m_BiasTensorInfo =
info.m_InputTensorInfos[2];
158 if (
m_Data.m_Parameters.m_BiasEnabled)
162 m_ConvolutionLayer->prepare();
163 FreeTensorIfUnused(m_KernelTensor);
164 FreeTensorIfUnused(m_BiasTensor);
167 m_ConvolutionLayer->run();
arm_compute::Status NeonConvolution2dWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const Convolution2dDescriptor &descriptor, const TensorInfo &weights, const Optional< TensorInfo > &biases, bool isFastMathEnabled, const ActivationDescriptor *activationDescriptor)