ArmNN
 25.11
Loading...
Searching...
No Matches
NeonConvolution2dWorkload.cpp
Go to the documentation of this file.
1//
2// Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3// SPDX-License-Identifier: MIT
4//
5
7
13
14#include <arm_compute/runtime/NEON/functions/NEConvolutionLayer.h>
15
16#include <armnn/Types.hpp>
17#include <Half.hpp>
18
19namespace armnn
20{
21
22using namespace armcomputetensorutils;
23
24arm_compute::Status NeonConvolution2dWorkloadValidate(const TensorInfo& input,
25 const TensorInfo& output,
26 const Convolution2dDescriptor& descriptor,
27 const TensorInfo& weights,
28 const Optional<TensorInfo>& biases,
29 bool isFastMathEnabled,
30 const ActivationDescriptor* activationDescriptor)
31{
32 const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
33 const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
34 arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weights, descriptor.m_DataLayout);
35 aclWeightsInfo.set_are_values_constant(weights.IsConstant());
36
37 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.m_DilationX,
38 descriptor.m_DilationY);
39
40 arm_compute::TensorInfo aclBiasesInfo;
41 arm_compute::TensorInfo *optionalAclBiasesInfo = nullptr;
42
43 if (descriptor.m_BiasEnabled)
44 {
45 if (!biases.has_value())
46 {
47 return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
48 "ArmNN NeonConvolution2dWorkload has empty bias value."};
49 }
50 aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
51 aclBiasesInfo.set_are_values_constant(biases.value().IsConstant());
52 optionalAclBiasesInfo = &aclBiasesInfo;
53 }
54
55 arm_compute::PadStrideInfo layerInfo = BuildArmComputePadStrideInfo(descriptor);
56
57 const arm_compute::ActivationLayerInfo activationInfo = ConvertActivationDescriptorToAclActivationLayerInfo(
58 activationDescriptor);
59
60 return arm_compute::NEConvolutionLayer::validate(&aclInputInfo,
61 &aclWeightsInfo,
62 optionalAclBiasesInfo,
63 &aclOutputInfo,
64 layerInfo,
65 arm_compute::WeightsInfo(),
66 aclDilationInfo,
67 activationInfo,
68 isFastMathEnabled);
69}
70
72 const Convolution2dQueueDescriptor& descriptor,
73 const WorkloadInfo& info,
74 std::shared_ptr<arm_compute::MemoryManagerOnDemand>& memoryManager,
75 const bool isFastMathEnabled)
77{
78 using arm_compute::NEConvolutionLayer;
79
80 uint32_t numInputs = m_Data.m_Parameters.m_BiasEnabled ? 3: 2;
81 m_Data.ValidateInputsOutputs("NeonConvolution2dWorkload", numInputs, 1);
82
83 arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
84 arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
85
86 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
87 input.info()->set_data_layout(aclDataLayout);
88 output.info()->set_data_layout(aclDataLayout);
89
90 m_KernelTensor = std::make_unique<arm_compute::Tensor>();
91 BuildArmComputeTensor(*m_KernelTensor, info.m_InputTensorInfos[1], m_Data.m_Parameters.m_DataLayout);
92 m_KernelTensor->info()->set_are_values_constant(info.m_InputTensorInfos[1].IsConstant());
93 if (m_Data.m_Parameters.m_BiasEnabled)
94 {
95 m_BiasTensor = std::make_unique<arm_compute::Tensor>();
96 BuildArmComputeTensor(*m_BiasTensor, info.m_InputTensorInfos[2], m_Data.m_Parameters.m_DataLayout);
97 m_BiasTensor->info()->set_are_values_constant(info.m_InputTensorInfos[2].IsConstant());
98 }
99
100 arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
101
102 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(m_Data.m_Parameters.m_DilationX,
103 m_Data.m_Parameters.m_DilationY);
104
105 const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor);
106
107 auto convolutionLayer = std::make_unique<arm_compute::NEConvolutionLayer>(memoryManager);
108 convolutionLayer->configure(&input,
109 m_KernelTensor.get(),
110 m_BiasTensor.get(),
111 &output,
112 padStrideInfo,
113 arm_compute::WeightsInfo(),
114 aclDilationInfo,
115 activationInfo,
116 isFastMathEnabled);
117
118 m_ConvolutionMethod =
119 convolutionLayer->get_convolution_method(input.info(),
120 m_KernelTensor->info(),
121 output.info(),
122 padStrideInfo,
123 arm_compute::WeightsInfo(),
124 aclDilationInfo,
125 activationInfo,
126 isFastMathEnabled);
127
128 // Add details for profiling output
129 WorkloadInfo detailsInfo;
130
131 detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos;
132 detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos;
134
135 // Report Profiling Details
136 ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonConvolution2dWorkload_Construct",
137 descriptor.m_Parameters,
138 detailsInfo,
139 GetGuid());
140
141 m_ConvolutionLayer.reset(convolutionLayer.release());
142 m_KernelTensorInfo = info.m_InputTensorInfos[1];
143
144 if (m_Data.m_Parameters.m_BiasEnabled)
145 {
146 m_BiasTensorInfo = info.m_InputTensorInfos[2];
147 }
148}
149
151{
152 ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonConvolution2dWorkload_Execute");
153 // The constant tensors may not be fully in place until the workload is Executed
154 if (!prepared)
155 {
156 InitializeArmComputeTensorData(*m_KernelTensor, m_KernelTensorInfo, m_Data.m_Inputs[1]);
157
158 if (m_Data.m_Parameters.m_BiasEnabled)
159 {
160 InitializeArmComputeTensorData(*m_BiasTensor, m_BiasTensorInfo, m_Data.m_Inputs[2]);
161 }
162 m_ConvolutionLayer->prepare();
163 FreeTensorIfUnused(m_KernelTensor);
164 FreeTensorIfUnused(m_BiasTensor);
165 prepared = true;
166 }
167 m_ConvolutionLayer->run();
168}
169
170arm_compute::ConvolutionMethod NeonConvolution2dWorkload::GetConvolutionMethod() const
171{
172 return m_ConvolutionMethod;
173}
174
175} //namespace armnn
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
arm::pipe::ProfilingGuid GetGuid() const final
Definition Workload.hpp:52
NeonBaseWorkload(const Convolution2dQueueDescriptor &descriptor, const WorkloadInfo &info)
arm_compute::ConvolutionMethod GetConvolutionMethod() const
NeonConvolution2dWorkload(const Convolution2dQueueDescriptor &descriptor, const WorkloadInfo &info, std::shared_ptr< arm_compute::MemoryManagerOnDemand > &memoryManager, const bool isFastMathENabled=false)
bool has_value() const noexcept
Definition Optional.hpp:53
bool IsConstant() const
Definition Tensor.cpp:513
Copyright (c) 2021 ARM Limited and Contributors.
arm_compute::Status NeonConvolution2dWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const Convolution2dDescriptor &descriptor, const TensorInfo &weights, const Optional< TensorInfo > &biases, bool isFastMathEnabled, const ActivationDescriptor *activationDescriptor)
arm_compute::ActivationLayerInfo ConvertAdditionalInfoToAclActivationLayerInfo(const QueueDescriptor &queueDescriptor)
std::string GetConvolutionMethodString(arm_compute::ConvolutionMethod &convolutionMethod)
DestType PolymorphicDowncast(SourceType *value)
Polymorphic downcast for build in pointers only.
arm_compute::ActivationLayerInfo ConvertActivationDescriptorToAclActivationLayerInfo(const ActivationDescriptor &actDesc)
void InitializeArmComputeTensorData(arm_compute::Tensor &tensor, TensorInfo tensorInfo, const ITensorHandle *handle)
An ActivationDescriptor for the ActivationLayer.
A Convolution2dDescriptor for the Convolution2dLayer.
uint32_t m_DilationY
Dilation along y axis.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation along x axis.
bool m_BiasEnabled
Enable/disable bias.
Contains information about TensorInfos of a layer.
std::vector< TensorInfo > m_OutputTensorInfos
Optional< std::string > m_ConvolutionMethod
std::vector< TensorInfo > m_InputTensorInfos