ArmNN
 25.02
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
NeonDepthwiseConvolutionWorkload.cpp
Go to the documentation of this file.
1 //
2 // Copyright © 2017-2024 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
7 
8 #include "NeonWorkloadUtils.hpp"
9 
11 
14 
16 
19 
20 #include <arm_compute/runtime/NEON/functions/NEDepthwiseConvolutionLayer.h>
21 
22 using namespace armnnUtils;
23 
24 namespace armnn
25 {
26 
27 using namespace armcomputetensorutils;
28 
30  const TensorInfo& output,
31  const DepthwiseConvolution2dDescriptor& descriptor,
32  const TensorInfo& weights,
33  const Optional<TensorInfo>& biases,
34  const ActivationDescriptor* activationDescriptor)
35 {
36  const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.m_DataLayout);
37  const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.m_DataLayout);
38 
39  // ArmNN format for weights for depthwise is [1, H, W, C] independently of the input/output layout
40  //
41  // ACL format for weights for depthwise is:
42  // - [1, H, W, C] for [N, H, W, C] input/output layout (matches with ArmNN)
43  // - [1, C, H, W] for [N, C, H, W] input/output layout
44  //
45  // Therefore ArmNN weights have to be permuted when input/output layout is [N, C, H, W] to pass them to ACL.
46  // The PermuteDepthwiseConv2dWeights backend optimization takes care of this, but it has not been performed yet,
47  // so we do the permute here for the TensorInfo weights.
48  unsigned int aclDepthMultiplier;
49  TensorInfo weightsPermuted;
50  std::tie(weightsPermuted, aclDepthMultiplier) = Convert1HWOTensorInfoToAcl(weights, input, descriptor.m_DataLayout);
51 
52  // Convert the weights into the compute library format
53  arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weightsPermuted, descriptor.m_DataLayout);
54  aclWeightsInfo.set_are_values_constant(weights.IsConstant());
55 
56  arm_compute::TensorInfo aclBiasesInfo;
57  arm_compute::TensorInfo* optionalAclBiasesInfo = nullptr;
58  if (descriptor.m_BiasEnabled)
59  {
60  if(!biases.has_value())
61  {
62  return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
63  "ArmNN NeonDepthwiseConvolutionWorkload has empty bias value."};
64  }
65  aclBiasesInfo = BuildArmComputeTensorInfo(biases.value(), descriptor.m_DataLayout);
66  aclBiasesInfo.set_are_values_constant(biases.value().IsConstant());
67  optionalAclBiasesInfo = &aclBiasesInfo;
68  }
69 
70  const arm_compute::PadStrideInfo aclPadStrideInfo = BuildArmComputePadStrideInfo(descriptor);
71  const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.m_DilationX,
72  descriptor.m_DilationY);
73 
74  const arm_compute::ActivationLayerInfo activationInfo = ConvertActivationDescriptorToAclActivationLayerInfo(
75  activationDescriptor);
76 
77  return arm_compute::NEDepthwiseConvolutionLayer::validate(&aclInputInfo,
78  &aclWeightsInfo,
79  optionalAclBiasesInfo,
80  &aclOutputInfo,
81  aclPadStrideInfo,
82  aclDepthMultiplier,
83  activationInfo,
84  aclDilationInfo);
85 }
86 
88  const DepthwiseConvolution2dQueueDescriptor& descriptor,
89  const WorkloadInfo& info)
91 {
92  arm_compute::ITensor& input = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[0])->GetTensor();
93  arm_compute::ITensor& output = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Outputs[0])->GetTensor();
94  arm_compute::ITensor& weights = PolymorphicDowncast<IAclTensorHandle*>(m_Data.m_Inputs[1])->GetTensor();
95  weights.info()->set_are_values_constant(info.m_InputTensorInfos[1].IsConstant());
96  arm_compute::ITensor* biasesPtr = nullptr;
97  if (m_Data.m_Parameters.m_BiasEnabled)
98  {
99  biasesPtr = &PolymorphicDowncast<IAclTensorHandle *>(m_Data.m_Inputs[2])->GetTensor();
100  biasesPtr->info()->set_are_values_constant(info.m_InputTensorInfos[2].IsConstant());
101  }
102 
103  arm_compute::TensorShape weightsShape = weights.info()->tensor_shape();
104  arm_compute::TensorShape inputShape = input.info()->tensor_shape();
105 
106  // The PermuteDepthwiseConv2dWeights backend optimization has been performed,
107  // converting weights to have the same data layout as input.
108  unsigned int depthMultiplier =
109  ComputeDepthwiseConv2dDepthMultiplier(m_Data.m_Parameters.m_DataLayout, weightsShape, inputShape);
110 
111  const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(m_Data.m_Parameters.m_DilationX,
112  m_Data.m_Parameters.m_DilationY);
113 
114  uint32_t numInputs = m_Data.m_Parameters.m_BiasEnabled ? 3: 2;
115  m_Data.ValidateInputsOutputs("NeonDepthwiseConvolutionWorkload", numInputs, 1);
116 
117  arm_compute::DataLayout aclDataLayout = ConvertDataLayout(m_Data.m_Parameters.m_DataLayout);
118  input.info()->set_data_layout(aclDataLayout);
119  weights.info()->set_data_layout(aclDataLayout);
120  output.info()->set_data_layout(aclDataLayout);
121 
122  const arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(m_Data.m_Parameters);
123 
124  const arm_compute::ActivationLayerInfo activationInfo = ConvertAdditionalInfoToAclActivationLayerInfo(descriptor);
125 
126  m_pDepthwiseConvolutionLayer = std::make_unique<arm_compute::NEDepthwiseConvolutionLayer>();
127  static_cast<arm_compute::NEDepthwiseConvolutionLayer*>(
128  m_pDepthwiseConvolutionLayer.get())->configure(&input,
129  &weights,
130  biasesPtr,
131  &output,
132  padStrideInfo,
133  depthMultiplier,
134  activationInfo,
135  aclDilationInfo);
136 
137  // Add details for profiling output
138  WorkloadInfo detailsInfo;
139 
140  detailsInfo.m_InputTensorInfos = info.m_InputTensorInfos;
141  detailsInfo.m_OutputTensorInfos = info.m_OutputTensorInfos;
142 
143  // Report Profiling Details
144  ARMNN_REPORT_PROFILING_WORKLOAD_DESC("NeonDepthwiseConvolution2dWorkload_Construct",
145  descriptor.m_Parameters,
146  detailsInfo,
147  GetGuid());
148 
149  m_pDepthwiseConvolutionLayer->prepare();
150 }
151 
153 {
154  ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID("NeonDepthwiseConvolutionWorkload_Execute");
155 
156  m_pDepthwiseConvolutionLayer->run();
157 }
158 
159 } //namespace armnn
#define ARMNN_SCOPED_PROFILING_EVENT_NEON_NAME_GUID(label)
Creates a profiling event that uses GetGuid() and GetName() from the calling class.
#define ARMNN_REPORT_PROFILING_WORKLOAD_DESC(name, desc, infos, guid)
Definition: Profiling.hpp:227
arm::pipe::ProfilingGuid GetGuid() const final
Definition: Workload.hpp:52
QueueDescriptor m_Data
Definition: Workload.hpp:74
NeonDepthwiseConvolutionWorkload(const DepthwiseConvolution2dQueueDescriptor &descriptor, const WorkloadInfo &info)
bool has_value() const noexcept
Definition: Optional.hpp:53
bool IsConstant() const
Definition: Tensor.cpp:513
Copyright (c) 2021 ARM Limited and Contributors.
arm_compute::Status NeonDepthwiseConvolutionWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const DepthwiseConvolution2dDescriptor &descriptor, const TensorInfo &weights, const Optional< TensorInfo > &biases, const ActivationDescriptor *activationDescriptor)
Status
enumeration
Definition: Types.hpp:43
arm_compute::ActivationLayerInfo ConvertAdditionalInfoToAclActivationLayerInfo(const QueueDescriptor &queueDescriptor)
std::tuple< TensorInfo, unsigned int > Convert1HWOTensorInfoToAcl(const TensorInfo &weightInfo, const TensorInfo &inputInfo, const DataLayout dataLayout)
Weights for depthwise have a datalayout of [1,H,W,O] = [1,H,W,I*M] This function coverts a TensorInfo...
DataLayout
Definition: Types.hpp:63
arm_compute::ActivationLayerInfo ConvertActivationDescriptorToAclActivationLayerInfo(const ActivationDescriptor &actDesc)
An ActivationDescriptor for the ActivationLayer.
Definition: Descriptors.hpp:37
A DepthwiseConvolution2dDescriptor for the DepthwiseConvolution2dLayer.
uint32_t m_DilationY
Dilation factor value for height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_DilationX
Dilation factor value for width dimension.
bool m_BiasEnabled
Enable/disable bias.
Depthwise Convolution 2D layer workload data.
std::vector< ITensorHandle * > m_Inputs
std::vector< ITensorHandle * > m_Outputs
void ValidateInputsOutputs(const std::string &descName, unsigned int numExpectedIn, unsigned int numExpectedOut) const
Contains information about TensorInfos of a layer.
std::vector< TensorInfo > m_OutputTensorInfos
std::vector< TensorInfo > m_InputTensorInfos