36 const arm_compute::TensorInfo aclInputInfo = BuildArmComputeTensorInfo(input, descriptor.
m_DataLayout);
37 const arm_compute::TensorInfo aclOutputInfo = BuildArmComputeTensorInfo(output, descriptor.
m_DataLayout);
48 unsigned int aclDepthMultiplier;
53 arm_compute::TensorInfo aclWeightsInfo = BuildArmComputeTensorInfo(weightsPermuted, descriptor.
m_DataLayout);
54 aclWeightsInfo.set_are_values_constant(weights.
IsConstant());
56 arm_compute::TensorInfo aclBiasesInfo;
57 arm_compute::TensorInfo* optionalAclBiasesInfo =
nullptr;
62 return arm_compute::Status{arm_compute::ErrorCode::RUNTIME_ERROR,
63 "ArmNN NeonDepthwiseConvolutionWorkload has empty bias value."};
65 aclBiasesInfo = BuildArmComputeTensorInfo(biases.
value(), descriptor.
m_DataLayout);
66 aclBiasesInfo.set_are_values_constant(biases.
value().IsConstant());
67 optionalAclBiasesInfo = &aclBiasesInfo;
70 const arm_compute::PadStrideInfo aclPadStrideInfo = BuildArmComputePadStrideInfo(descriptor);
71 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(descriptor.
m_DilationX,
75 activationDescriptor);
77 return arm_compute::NEDepthwiseConvolutionLayer::validate(&aclInputInfo,
79 optionalAclBiasesInfo,
95 weights.info()->set_are_values_constant(
info.m_InputTensorInfos[1].IsConstant());
96 arm_compute::ITensor* biasesPtr =
nullptr;
97 if (
m_Data.m_Parameters.m_BiasEnabled)
100 biasesPtr->info()->set_are_values_constant(
info.m_InputTensorInfos[2].IsConstant());
103 arm_compute::TensorShape weightsShape = weights.info()->tensor_shape();
104 arm_compute::TensorShape inputShape = input.info()->tensor_shape();
108 unsigned int depthMultiplier =
109 ComputeDepthwiseConv2dDepthMultiplier(
m_Data.m_Parameters.m_DataLayout, weightsShape, inputShape);
111 const arm_compute::Size2D aclDilationInfo = BuildArmComputeSize2D(
m_Data.m_Parameters.m_DilationX,
112 m_Data.m_Parameters.m_DilationY);
114 uint32_t numInputs =
m_Data.m_Parameters.m_BiasEnabled ? 3: 2;
115 m_Data.ValidateInputsOutputs(
"NeonDepthwiseConvolutionWorkload", numInputs, 1);
117 arm_compute::DataLayout aclDataLayout = ConvertDataLayout(
m_Data.m_Parameters.m_DataLayout);
118 input.info()->set_data_layout(aclDataLayout);
119 weights.info()->set_data_layout(aclDataLayout);
120 output.info()->set_data_layout(aclDataLayout);
122 const arm_compute::PadStrideInfo padStrideInfo = BuildArmComputePadStrideInfo(
m_Data.m_Parameters);
126 m_pDepthwiseConvolutionLayer = std::make_unique<arm_compute::NEDepthwiseConvolutionLayer>();
127 static_cast<arm_compute::NEDepthwiseConvolutionLayer*
>(
128 m_pDepthwiseConvolutionLayer.get())->configure(&input,
149 m_pDepthwiseConvolutionLayer->prepare();
arm_compute::Status NeonDepthwiseConvolutionWorkloadValidate(const TensorInfo &input, const TensorInfo &output, const DepthwiseConvolution2dDescriptor &descriptor, const TensorInfo &weights, const Optional< TensorInfo > &biases, const ActivationDescriptor *activationDescriptor)
std::tuple< TensorInfo, unsigned int > Convert1HWOTensorInfoToAcl(const TensorInfo &weightInfo, const TensorInfo &inputInfo, const DataLayout dataLayout)
Weights for depthwise have a datalayout of [1,H,W,O] = [1,H,W,I*M] This function coverts a TensorInfo...