ArmNN
 25.11
Loading...
Searching...
No Matches
BatchMatMulLayer Class Reference

#include <BatchMatMulLayer.hpp>

Inheritance diagram for BatchMatMulLayer:
[legend]
Collaboration diagram for BatchMatMulLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the BatchMatMul type.
BatchMatMulLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer.
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 Infers the output shape from the given input shapes.
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shapes will lead to a valid configuration of BatchMatMulLayer.
Public Member Functions inherited from LayerWithParameters< BatchMatMulDescriptor >
const BatchMatMulDescriptorGetParameters () const override
 If the layer has a descriptor return it.
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
const std::string & GetNameStr () const
const OutputHandlerGetOutputHandler (unsigned int i=0) const
OutputHandlerGetOutputHandler (unsigned int i=0)
ShapeInferenceMethod GetShapeInferenceMethod () const
bool GetAllowExpandedDims () const
const std::vector< InputSlot > & GetInputSlots () const
const std::vector< OutputSlot > & GetOutputSlots () const
std::vector< InputSlot >::iterator BeginInputSlots ()
std::vector< InputSlot >::iterator EndInputSlots ()
std::vector< OutputSlot >::iterator BeginOutputSlots ()
std::vector< OutputSlot >::iterator EndOutputSlots ()
bool IsOutputUnconnected ()
void ResetPriority () const
LayerPriority GetPriority () const
LayerType GetType () const override
 Returns the armnn::LayerType of this layer.
DataType GetDataType () const
const BackendIdGetBackendId () const
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer.
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 Infer the shape of the output(s) based on the provided input shape(s)
virtual void ReleaseConstantData ()
template<typename Op>
void OperateOnConstantTensors (Op op)
const char * GetName () const override
 Returns the name of the layer.
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots.
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots.
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index.
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index.
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index.
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index.
void SetGuid (LayerGuid guid)
LayerGuid GetGuid () const final
 Returns the unique id of the layer.
void AddRelatedLayerName (const std::string layerName)
const std::list< std::string > & GetRelatedLayerNames ()
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer.
Optional< BackendIdGetBackendHint () const
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
void SetAllowExpandedDims (bool allowExpandedDims)
template<typename T>
std::shared_ptr< T > GetAdditionalInformation () const
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)

Protected Member Functions

 BatchMatMulLayer (const BatchMatMulDescriptor &param, const char *name)
 Constructor to create a BatchMatMulLayer.
 ~BatchMatMulLayer ()=default
 Default destructor.
Protected Member Functions inherited from LayerWithParameters< BatchMatMulDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const BatchMatMulDescriptor &param, const char *name)
 ~LayerWithParameters ()=default
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer.
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
Protected Member Functions inherited from Layer
virtual ~Layer ()=default
template<typename QueueDescriptor>
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
template<typename QueueDescriptor>
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
template<typename QueueDescriptor>
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
template<typename LayerType, typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
virtual ConstantTensors GetConstantTensorsByRef () override final
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
void SetAdditionalInfo (QueueDescriptor &descriptor) const
Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle.

Additional Inherited Members

Public Types inherited from LayerWithParameters< BatchMatMulDescriptor >
using DescriptorType
Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector<std::reference_wrapper<std::shared_ptr<ConstTensorHandle>>>
using ImmutableConstantTensors = std::vector<std::reference_wrapper<const std::shared_ptr<ConstTensorHandle>>>
Protected Attributes inherited from LayerWithParameters< BatchMatMulDescriptor >
BatchMatMulDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.).
Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
std::vector< OutputHandlerm_OutputHandlers
ShapeInferenceMethod m_ShapeInferenceMethod

Detailed Description

Definition at line 13 of file BatchMatMulLayer.hpp.

Constructor & Destructor Documentation

◆ BatchMatMulLayer()

BatchMatMulLayer ( const BatchMatMulDescriptor & param,
const char * name )
protected

Constructor to create a BatchMatMulLayer.

Parameters
[in]paramBatchMatMulDescriptor to configure optional parameters for batch matrix multiplication
[in]nameOptional name for the layer

Definition at line 14 of file BatchMatMulLayer.cpp.

15 : LayerWithParameters(2, 1, LayerType::BatchMatMul, param, name)
16{}

References LayerWithParameters< BatchMatMulDescriptor >::LayerWithParameters().

Referenced by Clone().

◆ ~BatchMatMulLayer()

~BatchMatMulLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

BatchMatMulLayer * Clone ( Graph & graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 26 of file BatchMatMulLayer.cpp.

27{
28 auto layer = CloneBase<BatchMatMulLayer>(graph, m_Param, GetName());
29
30 return std::move(layer);
31}

References BatchMatMulLayer(), Layer::CloneBase(), Layer::GetName(), and LayerWithParameters< BatchMatMulDescriptor >::m_Param.

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory & factory) const
overridevirtual

Makes a workload for the BatchMatMul type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 18 of file BatchMatMulLayer.cpp.

19{
20 BatchMatMulQueueDescriptor descriptor;
21 SetAdditionalInfo(descriptor);
22
23 return factory.CreateWorkload(LayerType::BatchMatMul, descriptor, PrepInfoAndDesc(descriptor));
24}

References armnn::BatchMatMul, IWorkloadFactory::CreateWorkload(), LayerWithParameters< BatchMatMulDescriptor >::PrepInfoAndDesc(), and Layer::SetAdditionalInfo().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > & inputShapes) const
overridevirtual

Infers the output shape from the given input shapes.

Parameters
[in]inputShapesThe vector of input shapes for BatchMatMul.
Returns
A vector of inferred output shape.

Implements IConnectableLayer.

Definition at line 33 of file BatchMatMulLayer.cpp.

34{
35 if (inputShapes.size() != 2)
36 {
37 throw armnn::LayerValidationException("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
38 "\" - should be \"2\".");
39 }
40
41 TensorShape inputXShape = inputShapes[0];
42 TensorShape inputYShape = inputShapes[1];
43
44 // Adjoint is assumed to be square, but we will apply the permute anyway
45 if(m_Param.m_TransposeX || m_Param.m_AdjointX)
46 {
47 auto permuteVec = BatchMatMulDescriptor::GetPermuteVec(m_Param.m_DataLayoutX,
48 inputXShape);
49 inputXShape = armnnUtils::Permuted(inputXShape, permuteVec);
50 }
51 if(m_Param.m_TransposeY || m_Param.m_AdjointY)
52 {
53 auto permuteVec = BatchMatMulDescriptor::GetPermuteVec(m_Param.m_DataLayoutY,
54 inputYShape);
55 inputYShape = armnnUtils::Permuted(inputYShape, permuteVec);
56 }
57
58 TensorShape& longerInput = inputXShape.GetNumDimensions() >= inputYShape.GetNumDimensions()?
59 inputXShape : inputYShape;
60 TensorShape& shorterInput = inputXShape.GetNumDimensions() >= inputYShape.GetNumDimensions()?
61 inputYShape : inputXShape;
62
63 unsigned int inputNumDimsOffset = longerInput.GetNumDimensions() - shorterInput.GetNumDimensions();
64
65 unsigned int outputNumDimensions = longerInput.GetNumDimensions();
66
67 std::vector<unsigned int> tensorDimensions(outputNumDimensions, 0);
68
69 const auto& longerInputDataLayout = inputXShape.GetNumDimensions() >= inputYShape.GetNumDimensions()?
70 m_Param.m_DataLayoutX : m_Param.m_DataLayoutY;
71 auto longerAxesToMul = BatchMatMulDescriptor::GetAxesToMul(longerInputDataLayout,
72 longerInput);
73
74 for (unsigned int i = 0; i < outputNumDimensions; ++i)
75 {
76 if (i == longerAxesToMul.first)
77 {
78 tensorDimensions[i] = &shorterInput == &inputXShape ? inputXShape[i - inputNumDimsOffset] : inputXShape[i];
79 }
80 else if(i == longerAxesToMul.second)
81 {
82 tensorDimensions[i] = &shorterInput == &inputYShape ? inputYShape[i - inputNumDimsOffset] : inputYShape[i];
83 }
84 else // The other dimensions not to be multiplied (but may be broadcasted)
85 {
86 // Does NOT validate whether it's a valid broadcast - that's done in the validate func in WorkloadData.cpp
87 tensorDimensions[i] = static_cast<int>(i) - static_cast<int>(inputNumDimsOffset) < 0 ?
88 longerInput[i] :
89 std::max(longerInput[i], shorterInput[i - inputNumDimsOffset]);
90 }
91 }
92
93 auto outputShape = TensorShape(outputNumDimensions, tensorDimensions.data());
94 return std::vector<TensorShape>({ outputShape });
95}
armnn::TensorShape Permuted(const armnn::TensorShape &srcShape, const armnn::PermutationVector &mappings)
Definition Permute.cpp:125

References BatchMatMulDescriptor::GetAxesToMul(), TensorShape::GetNumDimensions(), BatchMatMulDescriptor::GetPermuteVec(), LayerWithParameters< BatchMatMulDescriptor >::m_Param, and armnnUtils::Permuted().

Referenced by ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shapes will lead to a valid configuration of BatchMatMulLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 97 of file BatchMatMulLayer.cpp.

98{
99 VerifyLayerConnections(2, CHECK_LOCATION());
100
101 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
102
103 VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
104
105 auto inferredShapes = InferOutputShapes({
106 GetInputSlot(0).GetTensorInfo().GetShape(),
107 GetInputSlot(1).GetTensorInfo().GetShape() });
108
109 if (inferredShapes.size() != 1)
110 {
111 throw armnn::LayerValidationException("inferredShapes has "
112 + std::to_string(inferredShapes.size()) +
113 " elements - should only have 1.");
114 }
115
116 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "BatchMatMulLayer");
117}
#define CHECK_LOCATION()

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), InferOutputShapes(), Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files: