ArmNN
 25.11
Loading...
Searching...
No Matches
Pooling2dLayer Class Reference

This layer represents a pooling 2d operation. More...

#include <Pooling2dLayer.hpp>

Inheritance diagram for Pooling2dLayer:
[legend]
Collaboration diagram for Pooling2dLayer:
[legend]

Public Member Functions

virtual std::unique_ptr< IWorkloadCreateWorkload (const IWorkloadFactory &factory) const override
 Makes a workload for the Pooling2d type.
Pooling2dLayerClone (Graph &graph) const override
 Creates a dynamically-allocated copy of this layer.
void ValidateTensorShapesFromInputs () override
 Check if the input tensor shape(s) will lead to a valid configuration of Pooling2dLayer.
std::vector< TensorShapeInferOutputShapes (const std::vector< TensorShape > &inputShapes) const override
 By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.
void ExecuteStrategy (IStrategy &strategy) const override
 Apply a visitor to this layer.
Public Member Functions inherited from LayerWithParameters< Pooling2dDescriptor >
const Pooling2dDescriptorGetParameters () const override
 If the layer has a descriptor return it.
void SerializeLayerParameters (ParameterStringifyFunction &fn) const override
 Helper to serialize the layer parameters to string (currently used in DotSerializer and company).
Public Member Functions inherited from Layer
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const char *name)
 Layer (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, DataLayout layout, const char *name)
const std::string & GetNameStr () const
const OutputHandlerGetOutputHandler (unsigned int i=0) const
OutputHandlerGetOutputHandler (unsigned int i=0)
ShapeInferenceMethod GetShapeInferenceMethod () const
bool GetAllowExpandedDims () const
const std::vector< InputSlot > & GetInputSlots () const
const std::vector< OutputSlot > & GetOutputSlots () const
std::vector< InputSlot >::iterator BeginInputSlots ()
std::vector< InputSlot >::iterator EndInputSlots ()
std::vector< OutputSlot >::iterator BeginOutputSlots ()
std::vector< OutputSlot >::iterator EndOutputSlots ()
bool IsOutputUnconnected ()
void ResetPriority () const
LayerPriority GetPriority () const
LayerType GetType () const override
 Returns the armnn::LayerType of this layer.
DataType GetDataType () const
const BackendIdGetBackendId () const
void SetBackendId (const BackendId &id) override
 Set the backend of the IConnectableLayer.
virtual void CreateTensorHandles (const TensorHandleFactoryRegistry &registry, const IWorkloadFactory &factory, const bool IsMemoryManaged=true)
void VerifyLayerConnections (unsigned int expectedConnections, const CheckLocation &location) const
virtual void ReleaseConstantData ()
template<typename Op>
void OperateOnConstantTensors (Op op)
const char * GetName () const override
 Returns the name of the layer.
unsigned int GetNumInputSlots () const override
 Returns the number of connectable input slots.
unsigned int GetNumOutputSlots () const override
 Returns the number of connectable output slots.
const InputSlotGetInputSlot (unsigned int index) const override
 Get a const input slot handle by slot index.
InputSlotGetInputSlot (unsigned int index) override
 Get the input slot handle by slot index.
const OutputSlotGetOutputSlot (unsigned int index=0) const override
 Get the const output slot handle by slot index.
OutputSlotGetOutputSlot (unsigned int index=0) override
 Get the output slot handle by slot index.
void SetGuid (LayerGuid guid)
LayerGuid GetGuid () const final
 Returns the unique id of the layer.
void AddRelatedLayerName (const std::string layerName)
const std::list< std::string > & GetRelatedLayerNames ()
virtual void Reparent (Graph &dest, std::list< Layer * >::const_iterator iterator)=0
void BackendSelectionHint (Optional< BackendId > backend) final
 Provide a hint for the optimizer as to which backend to prefer for this layer.
Optional< BackendIdGetBackendHint () const
void SetShapeInferenceMethod (ShapeInferenceMethod shapeInferenceMethod)
void SetAllowExpandedDims (bool allowExpandedDims)
template<typename T>
std::shared_ptr< T > GetAdditionalInformation () const
void SetAdditionalInfoForObject (const AdditionalInfoObjectPtr &additionalInfo)

Protected Member Functions

 Pooling2dLayer (const Pooling2dDescriptor &param, const char *name)
 Constructor to create a Pooling2dLayer.
 ~Pooling2dLayer ()=default
 Default destructor.
Protected Member Functions inherited from LayerWithParameters< Pooling2dDescriptor >
 LayerWithParameters (unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Pooling2dDescriptor &param, const char *name)
 ~LayerWithParameters ()=default
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
Layer::ImmutableConstantTensors GetConnectedConstantAsInputTensors () const
Protected Member Functions inherited from Layer
virtual ~Layer ()=default
template<typename QueueDescriptor>
void CollectQueueDescriptorInputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
template<typename QueueDescriptor>
void CollectQueueDescriptorOutputs (QueueDescriptor &descriptor, WorkloadInfo &info) const
void ValidateAndCopyShape (const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
void VerifyShapeInferenceType (const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
template<typename QueueDescriptor>
WorkloadInfo PrepInfoAndDesc (QueueDescriptor &descriptor) const
 Helper function to reduce duplication in *LayerCreateWorkload.
template<typename LayerType, typename ... Params>
LayerTypeCloneBase (Graph &graph, Params &&... params) const
virtual ConstantTensors GetConstantTensorsByRef () override final
virtual ImmutableConstantTensors GetConstantTensorsByRef () const override
void SetAdditionalInfo (QueueDescriptor &descriptor) const
Protected Member Functions inherited from IConnectableLayer
 ~IConnectableLayer ()
 Objects are not deletable via the handle.

Additional Inherited Members

Public Types inherited from LayerWithParameters< Pooling2dDescriptor >
using DescriptorType
Public Types inherited from IConnectableLayer
using ConstantTensors = std::vector<std::reference_wrapper<std::shared_ptr<ConstTensorHandle>>>
using ImmutableConstantTensors = std::vector<std::reference_wrapper<const std::shared_ptr<ConstTensorHandle>>>
Protected Attributes inherited from LayerWithParameters< Pooling2dDescriptor >
Pooling2dDescriptor m_Param
 The parameters for the layer (not including tensor-valued weights etc.).
Protected Attributes inherited from Layer
AdditionalInfoObjectPtr m_AdditionalInfoObject
std::vector< OutputHandlerm_OutputHandlers
ShapeInferenceMethod m_ShapeInferenceMethod

Detailed Description

This layer represents a pooling 2d operation.

Definition at line 13 of file Pooling2dLayer.hpp.

Constructor & Destructor Documentation

◆ Pooling2dLayer()

Pooling2dLayer ( const Pooling2dDescriptor & param,
const char * name )
protected

Constructor to create a Pooling2dLayer.

Parameters
[in]paramPooling2dDescriptor to configure the pooling2d operation.
[in]nameOptional name for the layer.

Definition at line 22 of file Pooling2dLayer.cpp.

23 : LayerWithParameters(1, 1, LayerType::Pooling2d, param, name)
24{
25}
LayerWithParameters(unsigned int numInputSlots, unsigned int numOutputSlots, LayerType type, const Pooling2dDescriptor &param, const char *name)

References LayerWithParameters< Pooling2dDescriptor >::LayerWithParameters(), and armnn::Pooling2d().

Referenced by Clone().

◆ ~Pooling2dLayer()

~Pooling2dLayer ( )
protecteddefault

Default destructor.

Member Function Documentation

◆ Clone()

Pooling2dLayer * Clone ( Graph & graph) const
overridevirtual

Creates a dynamically-allocated copy of this layer.

Parameters
[in]graphThe graph into which this layer is being cloned.

Implements Layer.

Definition at line 35 of file Pooling2dLayer.cpp.

36{
38}
LayerType * CloneBase(Graph &graph, Params &&... params) const
const char * GetName() const override
Returns the name of the layer.
Definition Layer.hpp:332

References Layer::CloneBase(), Layer::GetName(), LayerWithParameters< Pooling2dDescriptor >::m_Param, and Pooling2dLayer().

◆ CreateWorkload()

std::unique_ptr< IWorkload > CreateWorkload ( const IWorkloadFactory & factory) const
overridevirtual

Makes a workload for the Pooling2d type.

Parameters
[in]graphThe graph where this layer can be found.
[in]factoryThe workload factory which will create the workload.
Returns
A pointer to the created workload, or nullptr if not created.

Implements Layer.

Definition at line 27 of file Pooling2dLayer.cpp.

28{
29 Pooling2dQueueDescriptor descriptor;
30 SetAdditionalInfo(descriptor);
31
32 return factory.CreateWorkload(LayerType::Pooling2d, descriptor, PrepInfoAndDesc(descriptor));
33}
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Definition Layer.cpp:303
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const

References IWorkloadFactory::CreateWorkload(), armnn::Pooling2d, LayerWithParameters< Pooling2dDescriptor >::PrepInfoAndDesc(), and Layer::SetAdditionalInfo().

◆ ExecuteStrategy()

void ExecuteStrategy ( IStrategy & strategy) const
overridevirtual

Apply a visitor to this layer.

Reimplemented from LayerWithParameters< Pooling2dDescriptor >.

Definition at line 135 of file Pooling2dLayer.cpp.

136{
137 strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
138}
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0
const Pooling2dDescriptor & GetParameters() const override

References IStrategy::ExecuteStrategy(), Layer::GetName(), and LayerWithParameters< Pooling2dDescriptor >::GetParameters().

◆ InferOutputShapes()

std::vector< TensorShape > InferOutputShapes ( const std::vector< TensorShape > & inputShapes) const
overridevirtual

By default returns inputShapes if the number of inputs are equal to number of outputs, otherwise infers the output shapes from given input shapes and layer properties.

Parameters
[in]inputShapesThe input shapes layer has.
Returns
A vector to the inferred output shape.

Reimplemented from Layer.

Definition at line 40 of file Pooling2dLayer.cpp.

41{
42 if (inputShapes.size() != 1)
43 {
44 throw armnn::Exception("inputShapes' size is \"" + std::to_string(inputShapes.size()) +
45 "\" - should be \"1\".");
46 }
47
48 const TensorShape& inputShape = inputShapes[0];
49 const DataLayoutIndexed dimensionIndices = m_Param.m_DataLayout;
50
51 // If we support multiple batch dimensions in the future, then this assert will need to change.
52 if (inputShape.GetNumDimensions() != 4)
53 {
54 throw armnn::Exception("Pooling2dLayer will always have 4D input.");
55 }
56
57 unsigned int inWidth = inputShape[dimensionIndices.GetWidthIndex()];
58 unsigned int inHeight = inputShape[dimensionIndices.GetHeightIndex()];
59 unsigned int inChannels = inputShape[dimensionIndices.GetChannelsIndex()];
60 unsigned int inBatchSize = inputShape[0];
61
62 bool isGlobalPooling = (m_Param.m_StrideX==0 && m_Param.m_StrideY==0);
63 unsigned int outWidth = 1;
64 unsigned int outHeight = 1;
65 if (!isGlobalPooling)
66 {
68 {
69 throw armnn::Exception("Stride can only be zero when performing global pooling");
70 }
71
72 auto CalcSize = [](auto inSize, auto lowPad, auto highPad, auto poolSize, auto stride, auto outputShapeRounding)
73 {
74 unsigned int readSize = inSize + lowPad + highPad - poolSize;
75 float div = static_cast<float>(readSize) / static_cast<float>(stride);
76
77 unsigned int size = 0;
78 switch (outputShapeRounding)
79 {
81 size = static_cast<unsigned int>(ceil(div)) + 1;
82 break;
83 case OutputShapeRounding ::Floor:
84 size = static_cast<unsigned int>(floor(div)) + 1;
85 break;
86 default:
87 throw armnn::Exception("Unsupported Output Shape Rounding");
88 }
89
90 // MakeS sure that border operations will start from inside the input and not the padded area.
91 // This is what CL does...
92 if ((size - 1)*stride >= inSize + lowPad)
93 {
94 --size;
95 }
96
97 return size;
98 };
99
100 outWidth = CalcSize(inWidth, m_Param.m_PadLeft, m_Param.m_PadRight, m_Param.m_PoolWidth, m_Param.m_StrideX,
102 outHeight = CalcSize(inHeight, m_Param.m_PadTop, m_Param.m_PadBottom, m_Param.m_PoolHeight, m_Param.m_StrideY,
104 }
105 unsigned int outChannels = inChannels;
106 unsigned int outBatchSize = inBatchSize;
107
108 TensorShape tensorShape = m_Param.m_DataLayout == armnn::DataLayout::NHWC ?
109 TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
110 TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
111
112 return std::vector<TensorShape>({ tensorShape });
113}
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
Definition Tensor.cpp:174
unsigned int GetHeightIndex() const
unsigned int GetChannelsIndex() const
uint32_t m_PadRight
Padding right value in the width dimension.
uint32_t m_PoolHeight
Pooling height value.
uint32_t m_PadTop
Padding top value in the height dimension.
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
uint32_t m_PoolWidth
Pooling width value.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).

References armnn::Ceiling, DataLayoutIndexed::GetChannelsIndex(), DataLayoutIndexed::GetHeightIndex(), TensorShape::GetNumDimensions(), DataLayoutIndexed::GetWidthIndex(), LayerWithParameters< Pooling2dDescriptor >::m_Param, and armnn::NHWC.

Referenced by ValidateTensorShapesFromInputs().

◆ ValidateTensorShapesFromInputs()

void ValidateTensorShapesFromInputs ( )
overridevirtual

Check if the input tensor shape(s) will lead to a valid configuration of Pooling2dLayer.

Parameters
[in]shapeInferenceMethodIndicates if output shape shall be overwritten or just validated.

Implements Layer.

Definition at line 115 of file Pooling2dLayer.cpp.

116{
118
119 const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
120
122
123 auto inferredShapes = InferOutputShapes({ GetInputSlot(0).GetTensorInfo().GetShape() });
124
125 if (inferredShapes.size() != 1)
126 {
127 throw armnn::LayerValidationException("inferredShapes has "
128 + std::to_string(inferredShapes.size()) +
129 " elements - should only have 1.");
130 }
131
132 ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "Pooling2dLayer");
133}
#define CHECK_LOCATION()
const TensorInfo & GetTensorInfo() const override
Gets the TensorInfo for this InputSlot.
Definition Layer.cpp:614
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
Definition Layer.cpp:410
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
Definition Layer.hpp:337
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
Definition Layer.cpp:526
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
Definition Layer.hpp:339
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
Definition Layer.cpp:457
ShapeInferenceMethod m_ShapeInferenceMethod
Definition Layer.hpp:441
const TensorInfo & GetTensorInfo() const override
Definition Layer.cpp:100
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
const TensorShape & GetShape() const
Definition Tensor.hpp:193

References CHECK_LOCATION, Layer::GetInputSlot(), Layer::GetOutputSlot(), TensorInfo::GetShape(), InputSlot::GetTensorInfo(), OutputSlot::GetTensorInfo(), InferOutputShapes(), Layer::m_ShapeInferenceMethod, Layer::ValidateAndCopyShape(), Layer::VerifyLayerConnections(), and Layer::VerifyShapeInferenceType().


The documentation for this class was generated from the following files: