24.08
|
Go to the documentation of this file.
42 if (inputShapes.size() != 1)
44 throw armnn::Exception(
"inputShapes' size is \"" + std::to_string(inputShapes.size()) +
45 "\" - should be \"1\".");
57 unsigned int inWidth = inputShape[dimensionIndices.
GetWidthIndex()];
58 unsigned int inHeight = inputShape[dimensionIndices.
GetHeightIndex()];
60 unsigned int inBatchSize = inputShape[0];
63 unsigned int outWidth = 1;
64 unsigned int outHeight = 1;
69 throw armnn::Exception(
"Stride can only be zero when performing global pooling");
72 auto CalcSize = [](
auto inSize,
auto lowPad,
auto highPad,
auto poolSize,
auto stride,
auto outputShapeRounding)
74 unsigned int readSize = inSize + lowPad + highPad - poolSize;
75 float div =
static_cast<float>(readSize) /
static_cast<float>(stride);
77 unsigned int size = 0;
78 switch (outputShapeRounding)
81 size =
static_cast<unsigned int>(
ceil(div)) + 1;
83 case OutputShapeRounding ::Floor:
84 size =
static_cast<unsigned int>(floor(div)) + 1;
92 if ((size - 1)*stride >= inSize + lowPad)
105 unsigned int outChannels = inChannels;
106 unsigned int outBatchSize = inBatchSize;
109 TensorShape( { outBatchSize, outHeight, outWidth, outChannels } ) :
110 TensorShape( { outBatchSize, outChannels, outHeight, outWidth });
112 return std::vector<TensorShape>({ tensorShape });
125 if (inferredShapes.size() != 1)
128 + std::to_string(inferredShapes.size()) +
129 " elements - should only have 1.");
const TensorInfo & GetTensorInfo() const override
uint32_t m_PoolHeight
Pooling height value.
void Pooling2d(Decoder< float > &rInputDecoder, Encoder< float > &rOutputEncoder, const TensorInfo &inputInfo, const TensorInfo &outputInfo, const Pooling2dDescriptor ¶ms)
Computes the Pooling2d operation.
uint32_t m_StrideY
Stride value when proceeding through input for the height dimension.
Provides access to the appropriate indexes for Channels, Height and Width based on DataLayout.
void ValidateAndCopyShape(const TensorShape &outputShape, const TensorShape &inferredShape, const ShapeInferenceMethod shapeInferenceMethod, const std::string &layerName, const unsigned int outputSlotIndex=0)
const OutputSlot & GetOutputSlot(unsigned int index=0) const override
Get the const output slot handle by slot index.
uint32_t m_PadTop
Padding top value in the height dimension.
void ValidateTensorShapesFromInputs() override
Check if the input tensor shape(s) will lead to a valid configuration of Pooling2dLayer.
uint32_t m_PoolWidth
Pooling width value.
void ExecuteStrategy(IStrategy &strategy) const override
Apply a visitor to this layer.
const InputSlot & GetInputSlot(unsigned int index) const override
Get a const input slot handle by slot index.
const Pooling2dDescriptor & GetParameters() const override
const char * GetName() const override
Returns the name of the layer.
unsigned int GetHeightIndex() const
Pooling2dLayer(const Pooling2dDescriptor ¶m, const char *name)
Constructor to create a Pooling2dLayer.
Pooling2dDescriptor m_Param
The parameters for the layer (not including tensor-valued weights etc.).
DataLayout m_DataLayout
The data layout to be used (NCHW, NHWC).
unsigned int GetNumDimensions() const
Function that returns the tensor rank.
uint32_t m_PadBottom
Padding bottom value in the height dimension.
uint32_t m_PadRight
Padding right value in the width dimension.
WorkloadInfo PrepInfoAndDesc(QueueDescriptor &descriptor) const
Helper function to reduce duplication in *Layer::CreateWorkload.
void VerifyShapeInferenceType(const TensorShape &outputShape, ShapeInferenceMethod shapeInferenceMethod)
void SetAdditionalInfo(QueueDescriptor &descriptor) const
Pooling2dLayer * Clone(Graph &graph) const override
Creates a dynamically-allocated copy of this layer.
Base class for all ArmNN exceptions so that users can filter to just those.
unsigned int GetWidthIndex() const
This layer represents a pooling 2d operation.
uint32_t m_PadLeft
Padding left value in the width dimension.
uint32_t m_StrideX
Stride value when proceeding through input for the width dimension.
const TensorShape & GetShape() const
Copyright (c) 2021 ARM Limited and Contributors.
unsigned int GetChannelsIndex() const
virtual std::unique_ptr< IWorkload > CreateWorkload(const IWorkloadFactory &factory) const override
Makes a workload for the Pooling2d type.
void VerifyLayerConnections(unsigned int expectedConnections, const CheckLocation &location) const
OutputShapeRounding m_OutputShapeRounding
The rounding method for the output shape. (Floor, Ceiling).
std::vector< TensorShape > InferOutputShapes(const std::vector< TensorShape > &inputShapes) const override
By default returns inputShapes if the number of inputs are equal to number of outputs,...
A Pooling2dDescriptor for the Pooling2dLayer.
ShapeInferenceMethod m_ShapeInferenceMethod
LayerType
When adding a new layer, adapt also the LastLayer enum value in the enum class LayerType below.
virtual std::unique_ptr< IWorkload > CreateWorkload(LayerType type, const QueueDescriptor &descriptor, const WorkloadInfo &info) const =0
Backends should implement their own CreateWorkload function with a switch statement.
virtual void ExecuteStrategy(const IConnectableLayer *layer, const armnn::BaseDescriptor &descriptor, const std::vector< armnn::ConstTensor > &constants, const char *name, const armnn::LayerBindingId id=0)=0